Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet5/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   2   3   4   5   6   7   8   9   ...   81
Bog'liq
Alireza Fasih

1.
 
Introduction 
1.1
 
Motivation and general context 
Two of the main factors in transportation (urban and suburban traffic) are the issues of 
safety and efficiency (including fuel consumption). According to recorded statistics human 
fault is the major cause of road accidents [7, 8]. Most of the dangerous cases are highly 
depending on the behavior of the drivers and not on technical problems. Fatigue, micro-
sleep and alcohol can dramatically increase the accident probability [8]. To overcome these 
core problems that influence the safety of the driving process a combination of different 
technologies has been developed during the last couple of decades [8, 9]. The integrating 
platform for them is known as 
Advanced Driver Assistance System
(ADAS). Generally, these 
technologies involve the combination of different sensors, controllers and actuators to 
either give a warning or take part of the control in emergency situations.
ADAS systems are highly dependent on the sensory data information, fusion modules 
and control intelligence. There are various sensors involved such as laser scanner, LIDAR, 
radar, ultrasonic sensors and different type of cameras [10]. Generally, we can classify DAS 
systems in two main classes: active and passive. Active ADAS can have a control over the 
humane decision. This means that in a critical situation the system will react and change 
the driving parameters such as speed and steering angle. Contrary passive systems do only 
provide warnings and information the driver (for example about a dangerous situation) [8, 
10].
The most effective sensor which used in almost every new car is the “camera”. Cameras
can provide visual information about the scene and the overall situation of the car on the 
road. Depending on the specific ADAS solution different types of cameras can be involved 
such as night camera, HD-
camera and ‘high frame rates’ cameras.
A historical look at the evolution of ADAS shows a quick introduction of these 
technologies in vehicles. Increasing the reliability of ADAS, increasing computing capacity 


 

and decreasing the price are very important factors for both developers and system 
producers. Most of the ADAS solutions are camera-based and are using video processing 
for monitoring either the road or the driver to detect abnormal behaviors during driving. 
By fusing various sensors (cameras, radars, laser scanners, etc.) the field of view is 
enlarged, and the perception precision of objects in the relevant regions for the driving 
process is significantly increased [11]. Fusing data and information with different levels of 
quality and sampling rates is another challenging issue in ADAS technology. Darms 
et al.
have proposed a modular system architecture for sensor data processing and combining 
short range sensor, long range sensor, video information, actuators feedbacks, and vehicle 
dynamics sensors in ADAS technology [12]. In general, ADAS has three data processing 
levels which are sensor level, fusion level and application level. Figure 1 does show the 
abstract architecture of an ADAS system with respect to the different processing levels. 
Figure 1-1: ADAS processing levels architecture 
The following list does give a sample of functionalities provided by different ADAS 
solutions involving visual information and a digital camera: 
Lane departure warning system (LDWS) 
Traffic sign recognition 
Pedestrian detection 
Fatigue detection 
Adaptive cruise control 
The large amount of data provided by cameras requires a huge processing effort. 
Speeding up the processing is therefore extremely important especially while facing real-
time constraints [13]. Some algorithms such as stereo vision and depth estimation are 
particularly demanding in terms processing. Some algorithms have dependency and it is 

Download 3,22 Mb.
1   2   3   4   5   6   7   8   9   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish