|
Bajardi: murotaliyev e Qabul qildi: Ablaqulov K
|
bet | 9/9 | Sana | 18.05.2024 | Hajmi | 1,34 Mb. | | #243100 |
Bog'liq BeA-nJ6W8YxxDfevoAPRuaN8CbVE6OUB Algebraik va transsendent tenglamalar haqida tushuncha Noma’lum qatnashgan tenglikka tenglama deyiladi. f(x)=g(x) tenglikdan noma’lum x ni qiymatini topish, tenglamani yechish deyiladi. Tenglama - bu ikki funksiyaning qiymatlari f (x, y, ...) = g (x, y, ..) ga teng bo'lganda, argumentlarning qiymatlarini topish muammosining analitik yozuvidir. Bu funksiyalarga bog'liq bo'lgan argumentlar odatda noma'lum deb ataladi va funksiyalar qiymatlari teng bo'lgan noma'lum qiymatlari yechimlar yoki ildizlar deb ataladi. Algebraik tenglama quyidagi ko’rinishga ega: Algebraik va transsendent tenglamalar haqida tushuncha Noma’lum qatnashgan tenglikka tenglama deyiladi. f(x)=g(x) tenglikdan noma’lum x ni qiymatini topish, tenglamani yechish deyiladi. Tenglama - bu ikki funksiyaning qiymatlari f (x, y, ...) = g (x, y, ..) ga teng bo'lganda, argumentlarning qiymatlarini topish muammosining analitik yozuvidir. Bu funksiyalarga bog'liq bo'lgan argumentlar odatda noma'lum deb ataladi va funksiyalar qiymatlari teng bo'lgan noma'lum qiymatlari yechimlar yoki ildizlar deb ataladi. Algebraik tenglama quyidagi ko’rinishga ega: P(x1,x2,..xn)=Q(x1,x2,…xn) Bu yerda P va Q – ratsional sonli koeffitsentlar bilan berilgan ko’phadlar. Chiziqli tenglama – noma’lumning birinchi darajasi qatnashgan tenglamadir. Chiziqli tenglama quyidagi ko’rinishda bo’lishi mumkin. ax+b=0. a,b, berilgan sonlar. Ko’pgina amaliy hollarda murakkab shaklda berilgan tenglamalarni algebraik yechish usullari mavjud emas va ularni analitik yechib bo’lmaydi.
|
| |