• Talabni bashorat qilish
  • Mijozlarning tasnifi
  • Pythonda biznes jarayonlarini optimallashtirish uchun mashinali o‘qitish va ma’lumotlar tahlilidan foydalanish misollari




    Download 5,69 Mb.
    bet68/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   64   65   66   67   68   69   70   71   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    5.2.Pythonda biznes jarayonlarini optimallashtirish uchun mashinali o‘qitish va ma’lumotlar tahlilidan foydalanish misollari


    Pythonda biznes jarayonlarini optimallashtirish uchun mashinali o‘qitish va ma’lumotlarni tahlil qilishni qo‘llash turli xil vazifalarni o‘z ichiga olishi mumkin, masalan, bashorat qilish, tasniflash, klasterlash va naqsh va tendentsiyalarni aniqlash uchun umumiy ma’lumotlarni tahlil qilish. Mana bir nechta foydalanish misollari:
    Talabni bashorat qilish:
    Mahsulot yoki xizmatlarga talabni bashorat qilish inventarizatsiya va ishlab chiqarish quvvatini boshqarishni optimallashtirishga yordam beradi.
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_squared_error
    # Ma’lumotlarni yuklash
    data = pd.read_csv('ma’lumotlar_o_sotish.csv')
    # Ma’lumotlarni ajratish
    X_train, X_test, y_train, y_test = train_test_split(data.drop('Sales', axis=1), data['Sales'], test_size=0.2, random_state=42)
    # Modelni o‘qitish
    model = RandomForestRegressor()
    model.fit(X_train, y_train)
    # Bashorat qilish
    predictions = model.predict(X_test)
    # Aniqlikni baholash
    mse = mean_squared_error(y_test, predictions)
    Mijozlarning tasnifi:
    Mijozlarni ularning xususiyatlariga qarab tasniflash shaxsiylashtirilgan marketing strategiyalarini yaratishga yordam beradi.
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    # Ma’lumotlarni yuklash
    data = pd.read_csv('ma’lumotlar_o_klientlar.csv')
    # Ma’lumotlarni ajratish
    X_train, X_test, y_train, y_test = train_test_split(data.drop('Target', axis=1), data['Target'], test_size=0.2, random_state=42)
    # Modelni o‘qitish
    model = RandomForestClassifier()
    model.fit(X_train, y_train)
    # Bashorat qilish
    predictions = model.predict(X_test)
    # Aniqlikni baholash
    accuracy = accuracy_score(y_test, predictions)

    Download 5,69 Mb.
    1   ...   64   65   66   67   68   69   70   71   ...   182




    Download 5,69 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Pythonda biznes jarayonlarini optimallashtirish uchun mashinali o‘qitish va ma’lumotlar tahlilidan foydalanish misollari

    Download 5,69 Mb.