• Neyron tarmoqlar yordamida tasvirni qayta ishlash
  • Mavjud biznes jarayonlariga sun’iy intellekt texnologiyalarini joriy etish bo‘yicha tavsiyalar




    Download 5,69 Mb.
    bet71/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   67   68   69   70   71   72   73   74   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    5.3.Mavjud biznes jarayonlariga sun’iy intellekt texnologiyalarini joriy etish bo‘yicha tavsiyalar


    Python dasturlash tilida sun’iy intellekt yordamida biznes jarayonlarini avtomatlashtirishning ba’zi amaliy misollari:
    Elektron pochtani qayta ishlashni avtomatlashtirish:
    Elektron pochta xabarlarini avtomatik tahlil qilish va tasniflash uchun tabiiy tilni qayta ishlash uchun Space kutubxonasidan foydalaning.
    import spacy
    from spacy.matcher import Matcher
    # Space modelini yuklab olish
    nlp = spacy.load("en_core_web_sm")
    # Elektron pochta xabarlarini tasniflash funktsiyasi
    def classify_email(text):
    doc = nlp(text)
    matcher = Matcher(nlp.vocab)
    # Kalit so‘zlarni topish uchun naqshlarni aniqlash
    pattern1 = [{"LOWER": "urgent"}]
    pattern2 = [{"LOWER": "meeting"}]
    matcher.add("Urgent", None, pattern1)
    matcher.add("Meeting", None, pattern2)
    matches = matcher(doc)
    if matches:
    return " Muhim xat "
    else:
    return " Oddiy xat "
    # Foydalanish misoli
    email_text = " Uchrashuvga shoshilinch taklifnoma "
    classification = classify_email(email_text)
    print(classification)
    Neyron tarmoqlar yordamida tasvirni qayta ishlash:
    Tasvirlarni avtomatik ravishda tasniflaydigan neyron tarmoq modelini yaratish uchun TensorFlow kutubxonasidan foydalaning.
    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras.preprocessing import image
    import numpy as np
    # Oldindan tayyorlangan modelni yuklab olish
    model = keras.applications.MobileNetV2(weights="imagenet")
    # Tasvirni tasniflash funktsiyasi
    def classify_image(image_path):
    img = image.load_img(image_path, target_size=(224, 224))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = keras.applications.mobilenet_v2.preprocess_input(img_array)
    predictions = model.predict(img_array)
    decoded_predictions = keras.applications.mobilenet_v2.decode_predictions(predictions)
    return decoded_predictions[0][0][1]
    # Foydalanish misoli
    image_path = " yo‘l_k_rasm.jpg "
    classification = classify_image(image_path)
    print(f" Tasvir tasnifi: {classification}")

    Download 5,69 Mb.
    1   ...   67   68   69   70   71   72   73   74   ...   182




    Download 5,69 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Mavjud biznes jarayonlariga sun’iy intellekt texnologiyalarini joriy etish bo‘yicha tavsiyalar

    Download 5,69 Mb.