• Topshiriqlar
  • Kompyuterli modellashtirish



    bet89/141
    Sana15.01.2024
    Hajmi
    #138013
    1   ...   85   86   87   88   89   90   91   92   ...   141
    Bog'liq
    KM majmua (1)

    2-misol.
    2x+y -5z +t= 8
    X – 3y -6t = 9
    2y – z + 2t = -5
    X + 4y -7z + 6t= 0
    Tenglamalar sistemasini yeching.
    Yechish.
    >> A=[2 1-5 1;1-3 0 -6; 0 2 -1 2;1 4 -7 6];
    %sistemaning matritsasi


    217
    >> B=[8;9;-5;0];
    %o’ng tomonning ustun vektori
    >> A1=[A,B];
    %sistemaning kengaytirilgan matritsasi
    >> ifand(rank(A)==(A1),rank(A)==4)
    %matritsa rangini tekshirish
    Disp (Sistema yagona yechimga ega);
    X=A\B;
    % teskari slesh yoki chapdan bo’luv – chizig’li sistemani….
    %Gauss usuli bilan yechish
    X1=x’;
    End
    x1
    x1=
    3.0000
    -4.0000 -1.000 1.0000
    >>nx=A^(-1)*B; x2=x’
    %A\B yozuvning uchunchi variant
    x3 =
    3.0000
    -4.0000 -1.0000 1.0000
    Berilgan sistemaning enh kichik kvadratlar usuli bilan yechish
    >> A=[21 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6];
    % sistemaning matrisa
    >> B=[8;9;-5;0]
    %o’ng tomonlarining ustun vektori
    >> x=lsqr(A,B)
    % chiziqli sistemani yechish uchun % biriktirilgan funksiya (eng kichik
    kvadratlar usuli)
    x =
    3.0000 -4.0000 -1.0000 1.0000
    Misol:
    2 <
    x − 2
    x + 3
    Tenglikni yeching
    Yechish:
    >>maple(‘solve’,’{(x-2)/(x+3)>2}’,x)
    ans =


    218
    {-8 < x , x< -3 }
    Tengsizlikni yechimi
    -8 < x < < -3.
    3-misol
    ≤ 51 ,
    √ √ − 1 < 10.69 ≤ 10x
    2
    + 4x
    Tengsizlik sistemasini yeching
    Yechish:
    >>maple(‘solve’,’{(x-2)/(x+3)<=51,
    sqr(x) *(sqrt(x)-1) <10,10*x^2+4*x>=69}’,x)
    ans =
    {-1/5+1/10*694^(1/2)<= x, x < 21/2+1/2*41^(1/2)}
    >> vpa(ans,4)
    ans =
    {2.434 <= x, x < 13.70 }
    Topshiriqlar:
    -
    Variant asosida funksiyalar intеrpolyatsiyasini topish;
    -
    Yaratilgan grafiklarni rasmiylashtirish.

    Download
    1   ...   85   86   87   88   89   90   91   92   ...   141