Oddiy differensial tenglamalarni sonli yechish




Download 44.97 Kb.
bet8/11
Sana11.12.2023
Hajmi44.97 Kb.
#115665
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
fizik jarayonlarni kampyuterda mo\'dellashtirish
articles, #3.3 Atamalar, O ZBЕKISTON RЕSPUBLIKASI OLIY VA O RTA MAXSUS TA\'LIM VAZIRLIGI. TOSHKЕNT AVTOMOBIL-YO LLAR INSTITUTI. «Avtomobil yo llari va aeroportlar» kafеdrasi, sanoat-binosi-konstruksiyalarini-shikastlanish-holati-bo-yicha-tadqiq-etish, Abbos, Entity Framework, Anvar, Doc1, 6.12.2015., 31.03.15. test, 5-6-sinfdan test I variant., CamScanner 09.06.2023 14.30, Kurs ishi mavzu Fotosintez jarayonining ahamiyati va uni tarixi-fayllar.org (2), sirtqi E va S1 (9)
Oddiy differensial tenglamalarni sonli yechish. Ma'lumki, ko‘pincha amaliy masalalarni yechishda, dastlab uning matematik modeli fizik, mexanik, kimyoviy va boshqa qonuniyatlar asosida tuziladi. Matematik model asosan algebraik, differensial, integral va boshqa tenglamalardan iborat bo‘ladi. Ayniqsa, oddiy differensial tenglamalar juda ko‘p muhandislik masalalarini yechishda matematik model rolini o‘ynaydi. Shuning uchun, differensial tenglamalarning ma'lum shartlarni qanoatlantiruvchi yechimlarini topish katta ahamiyatga ega.
Differensial tenglamalar ikkita asosiy sinfga bo‘linadi: oddiy differensial

tenglamalar va xususiy hosilali differensial tenglamalar.


Xususiy hosilali differensial tenglamalarga keyinroq batafsil to‘xtalamiz.
Oddiy differensial tenglamalarda faqat bir o‘zgaruvchiga bog’liq funksiya va uning hosilalari qatnashadi, ya'ni
f (x, y, y ’,..., y(n)) = 0 (6.1)
(6.1) tenglamada qatnashuvchi hosilalarning eng yuqori tartibi differensial tenglamaning tartibi deyiladi. Agar tenglama izlanuvchi funksiya va uning hosilalariga nisbatan chiziqli bo‘lsa, unga chiziqli differensial tenglama deyiladi.
Differensial tenglamaning umumiy yechimi deb, uni ayniyatga aylantiruvchi x va n ta c1,c2,c3,...,cn o‘zgarmaslarga bog’liq ixtiyoriy funksiyaga aytiladi. Masalan (6.1) tenglamaning umumiy yechimi y = j(x,c1,c2,...,cn) ko‘rinishdagi funksiyalardan iborat . Agar c1,c2,c3,...,co‘zgarmaslarga muayyan qiymatlar berilsa, umumiy yechimdan xususiy yechim hosil qilinadi. Xususiy yechimni topish uchun c1,c2,c3,...,co‘zgarmaslarning mos qiymatlarini aniqlash lozim. Buning uchun esa yechim qanoatlantiruvchi qo‘shimcha shartlarga ega bo‘lishimiz kerak. Agar differensial tenglama n-tartibli bo‘lsa, yagona xususiy yechimni topish uchun xuddi shuncha qo‘shimcha shartlar kerak. Hususan, birinchi tartibli tenglama f(x, yy') = 0 ning umumiy yechimi y = j(x, c) dagi c o‘zgarmasni topish uchun bitta qo‘shimcha shartning berilishi kifoya.
Qo‘shimcha shartlar berilishiga ko‘ra differensial tenglamalar uchun ikki xil masala qo‘yiladi:
Koshi masalasi Chegaraviy masala.Agar qo‘shimcha shartlar bitta x = x0 nuqtada berilsa, differensial tenglamani yechish uchun qo‘yilgan masalani Koshi masalasi deyiladi. Koshi masalasidagi qo‘shimcha shartlar boshlang’ich shartlar, x = xnuqta esa boshlang’ich nuqta deb ataladi.
Agar qo‘shimchi shartlar erkli o‘zgaruvchi argumentlarning ikki yoki undan ko‘p qiymatlarida berilsa, bunday masalaga chegaraviy masala deyiladi. Qo‘shimcha shartlar esa chegaraviy shartlar deb ataladi.
Oddiy differensial tenglamalarni yechishning chizma, analitik, taqribiy va sonli yechish usullari mavjud.
Chizma usullarda differensial tenglamaning integral chiziqlarini geometrik tasviri yasaladi. Bunda hosila o‘zgarmas bo‘lgandagi int egral chiziqlar-izoklinalar tuziladi. Bu usuldan asosan sodda ko‘rinishdagi differensial tenglamalarni

yechishda foydalaniladi.


Analitik usullarda differensial tenglamaning yechimlari aniq formulalar orqali aniqlanadi.
Taqribiy usullarda differensial tenglama va qo‘shimcha shartlar u yoki bu darajada soddalashtirilib, masala osonroq masalaga keltiriladi.
Sonli usullarda esa yechim analitik shaklda emas, balki sonlar jadvali ko‘rinishida olinadi. Albatta, bunda differensial tenglamalar oldin diskret tenglamalar bilan almashtirib olinadi. Natijada, sonli usullar vositasida olingan yechim taqribiy bo‘ladi.
Umuman olganda, oddiy differensial tenglamalarning yechimlarini analitik usul yordamida topish imkoni juda kam bo‘lganligi uchun, amalda ko‘pincha ularni sonli usullar yordamida taqribiy hisoblanadi.
Quyida Koshi masalasini sonli yechish usullaridan na'muna sifatida Eyler va Runge-Kutta usullarini ko‘rib chiqamiz.

Download 44.97 Kb.
1   2   3   4   5   6   7   8   9   10   11




Download 44.97 Kb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Oddiy differensial tenglamalarni sonli yechish

Download 44.97 Kb.