• Kurs ishining maqsadi va vazifalari
  • Kurs ishining metodi.
  • Kurs ishi mavzusining dolzarbligi




    Download 4,32 Mb.
    bet2/8
    Sana14.05.2024
    Hajmi4,32 Mb.
    #231690
    1   2   3   4   5   6   7   8
    Bog'liq
    Yorug’lik tezligi va uning aniqlash ussulari

    Kurs ishi mavzusining dolzarbligi:Biz kundalik hayotda turli xil fizik hodisalar, qonuniyatlarga duch kelamiz. Hammamiz ham bu qonuniyatlarni tushuna olavermaymiz, shuningdek, deyarli e’tibor bermaymiz. Misol tariqasida erta tongda quyosh ufqqa ko‘tarilib, tahminan 8 daqiqada quyosh nurining yerga yetib kelishi bilan tong otadi va kechga borib quyosh uffqa botishi bilan kun qorayib tun boshlanadi. Bularning barchasi fizik qonuniyatlar asosida ro‘y beradi. Shuningdek kun davomida ko‘pgina fizik hodisalarga duch kelishimiz mumkin. Shulardan biri yorug‘lik qonuniyatlari. Bugungi shiddatli zamonda insonlarning tobora ehtiyoji ortib bormoqda. Xususan energiyaga ham. Muqobil energiya manbalarini topish insoniyat oldidagi dolzarb masalalardan hisoblanadi. Bu kabi masalalardan faqat ilmiy yondashibgina yechim topish mumkin. Biz quyosh energiyasidan foydalanishni boshladik. Quyosh batareyalari bugungi kunda ko‘pchiligimizni energiya manbai bilan ta’minlamoqda.
    Energiyaning bu turi ekologik toza va arzonroq hisoblanadi. Bulardan ko‘rinib turibdiki biz yorug‘lik haqida ko‘proq va chuqurroq o‘rganishimiz kerak.
    Kurs ishining maqsadi va vazifalari: Fizika fanining optika bo‘limiga tegishli bo‘lgan “Yorug‘lik tezligi” mavzusini yoritib berishdan iborat.
    Ushbu mavzularni o‘rganishda :

    • Ilg‘or texnologiyalardan foydalanish;

    • Optika bo‘limiga oid bilim va ko‘nikmalarni samaradorligini oshirish;

    • Muammolarni o‘rganish va ularga ilmiy yechim topish;

    • O‘rgangan bilimlarimizni kundalik hayotimizga taqbiq qilish.

    Kurs ishining metodi. Tadqiqot ishining bajarilishida muammoga oid ilmiy, ilmiy – uslubiy ishlar va adabiyotlarni taxlili, hamda tadqiqot natijalarini umumlashtirish va matematik – statistik ishlov berish metodlaridan foydalanildi.
    I BOB .YORUG’LIK TABIATI
    1.Yorug’lik haqida umumiy tushunchalar
    Yorugʻlik — inson  koʻzi  sezadigan elektromagnit toʻlqinlar. Bu vakuumda. toʻlqin uzunligi ~ 400 Nm dan ~ 760 Nm gacha boʻlgan toʻlqinlar uzunligiga  mos keladi. Spektrning infraqizil  nurlanish  va ultrabinafsha nurlanish sohalari ham Yorugʻlik deb ataladi. Spektrning infraqizil nurlanish sohasi bilan rentgen nurlari orasida keskin chegara yoʻq. Turli yoritqichlar (Quyosh, yulduzlar, elektr lampochkalar va boshqa) Yorugʻlik chiqaradi. Yorugʻlik toʻlqin xossaga hamda korpuskulyar xossaga ega. Baʼzi hodisalar (difraksiya, interferensiya, qutblanish)da yorugʻlikning toʻlqin xossasi, boshqa hodisalar (fotoeffekt, lyuminessensiya, atom va molekulalar spektrlari)da korpuskulyar xossasi namoyon boʻladi. Yorugʻlikning toʻlqin xossasini toʻlqinlar nazariyasi, korpuskulyar xossasini kvant  nazariya tavsiflab beradi; har ikkala xossasi birbirini toʻldiradi.
    Yorugʻlikning korpuskulyar nazariyasini I. Nyuton, toʻlqin nazariyasini X. Gyuygens, kvant nazariyasini A. Eynshteyn ishlab chiqqan. Yorugʻlik qonuniyatlari optikada oʻrganiladi. Yorugʻlik bosimi, yaʼni mexanik taʼsiri borligini J. K. Maksvell nazariy isbotlagan. Yorugʻlikning issiqlik, elektr, fotokimyoviy va b. taʼsirlari mavjud. Baʼzi qoʻngʻizlar, oʻsimliklar, elementlar ham oʻzidan yorugʻlik chiqaradi.
    Yorugʻlik birliklari — Yorugʻlik kuchi, yoritilganlik, ravshanlik, Yorugʻlik oqimi va boshqalar yoruglik kattaliklari birliklari. Xalqaro birliklar tizimida Yorugʻlik kuchi birligi sifatida kandela ishlatiladi. Yorugʻlik oqimi birligi qilib lyumen qabul qilingan. Sirtning yoritilishi sirtga tushayotgan Yorugʻlik oqimi, yaʼni Yorugʻlik kvanti zichligi bilan aniqlanadi. 1 sm2 sirtga tushayotgan 1 lyumen Yorugʻlik oqimi fot (f) bilan ifodalanadi. Fot bilan bir qatorda radfot (radiatsiya) ishlatiladi. Ravshanlik sirtga tik tushayotgan Yorugʻlik kuchi bilan oʻlchanadi; ravshanlik birligi — stilb (sb). Fotometriyada Yorugʻlik energiyasi joul, Yorugʻlik oqimi vattlar bilan oʻlchanadi. Yorugʻlik bosimi — Yorugʻlikning uni qaytaruvchi va yutuvchi jismlarga, zarralarga, shuningdek, ayrim molekula va atomlarga koʻrsatadigan taʼsiri. Yorugʻlik bosimi haqidagi farazni birinchi marta 1619 yilda I. Kepler kometa dumlarining Quyosh yaqinidan uchib oʻtishidagi ogʻishini tushuntirish uchun ishlatgan edi. 1873 yilda J. K. Maksvell elektromagnit nazariya asosida Yorugʻlik bosimi kattaligini hisoblab chiqdi. U eng kuchli Yorugʻlik manbalari (Quyosh, elektr toki) uchun ham juda kichik miqdor ekan. Yer sharoitida u yonaki hodisalar (konveksion toklar, radiometrik kuchlar) bilan niqoblanadi. Shu sababli, Yorugʻlik bosimini sof holda oʻlchash murakkab ish. Uni birinchi marta 1899 yilda P. N. Lebedev  tajribada aniqlagan. Uning olgan natijalari J. K. Maksvellning hisoblashlariga mos kelgan edi. U Yorugʻlikning gazlarga beradigan bosimini oʻlchash mumkinligini 1908 yilda isbotladi.
    Dumli yulduzlar Yorugʻlik bosimi taʼsirida paydo bo'ladi, deb taxmin qilinadi. Elektromagnit nazariyaga ko'ra, jism sirtiga tik tushuvchi yassi elektromagnit toʻlqin yuzaga keltiruvchi bosim elektromagnit energiyaning sirt yaqinidagi zichligi i ga teng . Ushbu energiya jismga tushuvchi va undan qaytuvchi toʻlqinlar energiyasidan tashkil topadi. Agar jism sirtining 1 sm2 ga tushuvchi elektromagnit toʻlqin quvvati Q erg/sm2s, qaytarish koeffitsiyenti R boʻlsa, u holda sirt yaqinida energiya zichligi u=Q(h+R)/c. Bundan Yorugʻlikning jism sirtiga bosimi P=Q(h+R)/c boʻladi. Yorugʻlik bosimi koʻlamlari bir-biridan jiddiy farq qiluvchi astrofizika va atom sohalarida juda muhimdir. Lazerlar paydo boʻlishi bilan Yorugʻlik bosimidan turli sohalarda foydalanish imkoni keskin kengaydi. Yorugʻlik vektori (Yorugʻlik maydon nazariyasida) — Yorugʻlik energiyasining kattaligini va koʻchirilish yoʻnalishini aniqlab beruvchi Yorugʻlik oqimi zichligini ifodalaydigan vektor. U fotometriyada amaliy ahamiyatga ega, uning yordamida Yorugʻlikning hajm zichligi, Yorugʻlik oqimining yutilishi, sirtning yoritilganligi va b. aniqlanadi. Yorugʻlik kvanti — foton energiyasi. Yorugʻlik toʻlqin tarqatish bilan birga korpuskulyar, yaʼni kvant tabiatga ham ega boʻlishini M. Plank isbotlagan. Plank nazariyasiga koʻra, Yorugʻlik moddaning atom, molekulalaridan uzluksiz oqim tarzida emas, balki aniq miqdordagi ayrim ulushlar tarzida chiqadi va ularga shunday ulushlar tarzida yutiladi. Bu ulushlar kvantlardir.
     Fotoeffekt hodisasini shu nazariyaga asoslanib tushuntirish mumkin. Kvant mexanika qonunlari ham shu nazariyaga asoslangan. Yorugʻlik kuchi — koʻrinuvchi nurlanish manbaining muayyan yoʻnalishda yorugʻlanishini ifodalaydigan Yorugʻlik kattaligi. Yorugʻlik manbaidan fazoviy burchak birligi O.da tarqalayotgan Yorugʻlik oqimi F ni ifodalaydi: . Xalqaro birliklar tizimi SIda kandela (kd) Yorugʻlik kuchi oʻlchov birligi deb qabul qilingan. Yorugʻlik kuchini aniqlash yoritish texnikasida (uyjoylarni yoritish), tibbiyotda (yorugʻlik bilan davolash), ilmiy tadqiqot ishlarida amaliy ahamiyatga ega. Yorugʻlik oqimi. Yorugʻlik energiyasini sezishda, tabiiyki, koʻz alohida ahamiyatga ega. Inson koʻzining turli rangdagi Yorugʻlikni sezish qobiliyati ham turlicha. Shuning uchun biror sirt orqali oʻtayotgan Yorugʻlikning toʻlqin energiyasi emas, balki bu Yorugʻlik energiyasining bevosita koʻzga taʼsir etib koʻrish sezgisi uygʻotadigan qismi ahamiyatli. Biror sirt orqali vaqt birligi ichida oʻtadigan va koʻrish sezgisi bilan baholanadigan yorugʻlik energiyasi Yorugʻlik oqimi deb ataladi, yaʼni F= W/t, bunda F — Yorugʻlik oqimi; t — Yorugʻlik tushayotgan vaqt oraligʻi; W — sirt orqali oʻtayotgan, yaʼni fazoviy burchak O. da tarqalayotgan Yorugʻlik energiyasi. Agar W — nuqtaviy manbadan barcha yoʻnalishlar boʻyicha tarqalayotgan Yorugʻlik energiyasini ifodalasa, F — toʻla Yorugʻlik oqimini bildiradi. Yorugʻlik oqimining oʻlchov birligi qilib lyumen (lm) qabul qilingan. U Yorugʻlik kuchi 1 qd boʻlgan manbaning fazoviy burchak 1 sr da hosil qiladigan Yorugʻlik oqimini ifodalaydi: 1 kd1 sr=1 lm. Yorugʻlik energiyasi — inson koʻzi sezadigan elektromagnit toʻlqinlar energiyasi qismi. U Yorugʻlik oqimining yoritish davomliligiga koʻpaytmasiga teng. Yorugʻlik energiyasi birligi — lyumen x xsekund (lms)
    Yorugʻlikning quyidagi xossalari ajratib koʻrsatiladi:

    • Intensivlik

    • Chastota

    • Qutblanish

    Yorugʻlik muammolari bilan fizikaning optika boʻlimi shugʻullanadi.
    Optika bo‘limida yorug‘lik hodisalari va qonunlari, yorug‘likning tabiati hamda uning modda bilan o‘zaro ta’siri o‘rganiladi. Qadimgi olimlarning, yorug‘lik o‘zi nima, degan masala to‘g‘- risidagi dastlabki tasavvurlari nihoyatda sodda edi. Ular ko‘zdan juda ingichka maxsus paypaslagichlar chiqib, ular narsalarni paypaslaganda ko‘rish tuyg‘usi hosil bo‘ladi, deb hisoblar edilar. Bunday qarashlar to‘g‘risida batafsil to‘xtalib o‘tishga hozir zarurat bo‘lmasa kerak, albatta. Biz yorug‘likning o‘zi nima, degan masala to‘g‘risidagi ilmiy tasavvurlarning rivojlanishini qisqacha ko‘rib chiqamiz. Yorug‘lik manbayidan, masalan, elektr lampadan yorug‘lik hamma tomonga tarqaladi va atrofdagi narsalarga tushib, ularni isitadi. Yorug‘lik ko‘zimizga tushib, ko‘rish tuyg‘usi hosil qiladi. Yorug‘lik tarqalishida ta’sir bir jismdan (manbadan) boshqa jismga (qabul qilgichga) uzatiladi deyish mumkin. Umuman olganda, bir jism boshqa jismga ikki xil usulda: yo manbadan qabul qilgichga moddaning ko‘chirilishi vositasida yoki jismlar orasidagi muhit holatining o‘zgarishi vositasida (modda ko‘chirilmasdan) ta’sir qilishi mumkin. Masalan, bizdan biror masofada turgan qo‘ng‘iroq mo‘ljalga olinib, unga shar otilsa-yu, bu shar qo‘ng‘iroqqa borib tegsa, qo‘ng‘iroq jiringlaydi . Bunda moddani ko‘chiramiz. Ammo qo‘ng‘iroqni boshqacha yo‘l bilan: qo‘ng‘iroq tiliga kanop bog‘lash va shu kanop bo‘ylab qo‘ng‘iroq tilini tebratuvchi to‘lqinlar yuborish yo‘li bilan ham . jiringlatsa bo‘ladi. Bu holda modda ko‘chmaydi. Bunda kanop bo‘ylab to‘lqin tarqaladi, ya’ni kanopning holati (shakli) o‘zgaradi. Shunday qilib, ta’sir bir jismdan boshqa bir jismga to‘lqinlar vositasida uzatilishi ham mumkin ekan.
    Manbadan qabul qilgichga ta’sir uzatishning mumkin bo‘lgan ikki usuliga muvofiq ravishda, yorug‘likning o‘zi nima, uning tabiati qanday, degan masalaga oid mutlaqo har xil ikki nazariya paydo bo‘ldi va rivojlana boshladi. Bu nazariyalar XVII asrda qariyb bir vaqtda paydo bo‘ldi. Bu nazariyalardan biri Nyuton nomi bilan, ikkinchisi esa Gyuygens nomi bilan bog‘liq. Nyuton yorug‘likning korpuskular1 nazariyasi nazariyasi ijodchisi edi. Bu nazariyaga ko‘ra, yorug‘lik — manbadan har tarafga tarqaluvchi zarrachalar oqimidan zarrachalar oqimidan (moddaning ko‘chishidan) iborat. Gyuygensning tasavvurlariga ko‘ra, yorug‘lik yorug‘likyorug‘lik alohida, faraziy muhitda — butun fazoni to‘ldiruvchi va barcha jismlarning ichiga singuvchi efirda tarqaladigan to‘lqindan iborat. Ikkala nazariya ham alohida-alohida holda uzoq vaqt mavjud bo‘lib keldi. Ularning hech biri ham ikkinchisi ustidan g‘alaba qozona olmadi. Nyutonning obro‘sigina ko‘pchilik olimlarni korpuskular nazariyani afzal ko‘rishga majbur etdi. Yorug‘lik tarqalishining o‘sha vaqtda tajribadan ma’lum bo‘lgan qonunlarini ikkala nazariya ham ma’lum darajada muvaffaqiyat bilan izohlab berar edi. Yorug‘lik dastalari fazoda o‘zaro kesishganda bir-biriga hech qanday ta’sir etmasligining sababini korpuskular nazariya asosida izohlab berish qiyin edi. Yorug‘lik zarrachalari o‘zaro to‘qnashib, har tarafga sochilishi kerak-ku, axir. Òo‘lqin nazariya buni oson izohlab bera olar edi. Masalan, suv betidagi to‘lqinlar bir-biri orqali bemalol o‘tadi va bunda ular o‘zaro ta’sir etmaydi. Ammo yorug‘likning to‘g‘ri chiziq bo‘ylab tarqalishini va buning natijasida aniq soyalar hosil bo‘lishi sababini to‘lqin nazariya asosida izohlab berish ancha qiyin edi. Korpuskular nazariyaga ko‘ra esa yorug‘likning to‘g‘ri chiziq bo‘ylab tarqalishi inersiya qonunining natijasi deb qaralar edi. Yorug‘likning tabiati to‘g‘risidagi bunday nomuqim ahvol XIX asrning boshigacha, yorug‘lik difraksiyasi (yorug‘likning to‘siqlarni aylanib o‘tishi) va yorug‘lik interferensiyasi (yorug‘lik dastalari bir-biri ustiga tushganda yoritilganlikning kuchayuvi yoki zaiflashuvi) hodisalari kashf etilgan vaqtgacha davom etib keldi.
    Bu hodisalar faqat to‘lqin harakatlar uchun xos. Ularning sababini korpuskular nazariya asosida izohlab bo‘lmaydi. Shu sababli to‘lqin nazariya uzil-kesil va to‘la g‘alaba qilgandek bo‘ldi. Bunday ishonch XIX asrning ikkinchi yarmida Maksvell yorug‘lik elektromagnit to‘lqinlarning xususiy holi ekanligini ko‘rsatgandan keyin ayniqsa mustahkamlandi. Maksvellning ishlari yorug‘likning elektromagnit nazariyasiga asos bo‘ldi. Gers elektromagnit to‘lqinlarni tajribada aniqlagandan keyin yorug‘likning to‘lqin kabi tarqalishiga hech qanday shubha qolmadi. Bunga hozir ham shubha yo‘q. Ammo XX asr boshida yorug‘likning tabiati to‘g‘risidagi tasavvurlar tubdan o‘zgardi. Rad etilgan korpuskular nazariya har holda haqiqatga yaqin ekanligi to‘satdan ma’lum bo‘lib qoldi. Yorug‘lik xuddi zarrachalar oqimi kabi sochiladi va yutiladi. Yorug‘lik xuddi zarrachalar oqimi kabi sochiladi va yutiladi. Yorug‘likning uzlukli ekanligi, ya’ni unda kvant xossalari borligi payqaldi. Nuqtaviy yorug‘lik manbayidan yorug‘lik hamma tomonga tarqaladi va atrofdagi jismlarga tushib, ularni isitadi. Yorug‘lik ko‘zimizga tushib, ko‘rish tuyg‘usi hosil qiladi va biz ko‘ramiz. XX asrning boshlariga kelib, yorug‘likning elektromagnit to‘lqin nazariyasi asosida tushuntirish mumkin bo‘lmagan hodisalardan fotoeffekt va jismlar nurlanishi kashf qilindi. 1900- yilda nemis fizigi Plank tomonidan yorug‘likning kvant nazariyasi yorug‘likning kvant nazariyasi yaratildi. Yorug‘likning kvant nazariyasi Eynshteyn tomonidan rivojlantirilib, yorug‘likning fotonlar nazariyasi yorug‘likning fotonlar nazariyasi yaratildi. Yorug‘lik ma’lum diapazondagi elektromagnit to‘lqinlardan iboratdir. Inson ko‘zi butun nurlanish tarkibidan faqat to‘lqin uzunligi 3,8•10–7 m dan 7,7•107 m gacha bo‘lgan nurlarnigina ko‘ra oladi. Òo‘lqin uzunligi 3,8•10–7 m dan qisqa bo‘lgan nurlar ultrabinafsha nurlar, to‘lqin uzunligi 7,7•10–7 m dan katta bo‘lgan nurlar esa infraqizil infraqizilinfraqizil nurlar deb ataladi. Ultrabinafsha va infraqizil nurlar ko‘zga ko‘rinmaydi. Jismlardan yorug‘lik qaytib ko‘zimizga tushgandagina biz ularni ko‘ramiz. Ba’zi jismlar o‘zidan yorug‘lik sochganligi uchun yorug‘lik manbalaridan iborat bo‘lib, ular to‘g‘ridan to‘g‘ri ko‘rinadi. Yorug‘lik manbalari deb, molekulalari va atomlari ko‘rinadigan nurlanish hosil qiladigan barcha jismlarga aytiladi. Yorug‘lik manbalari ikki guruhga: tabiiy va sun’iy manbalarga bo‘linadi. Òabiiy yorug‘lik manbalariga Quyoshni, yulduzlarni va ba’zi nurlanuvchi tirik organizmlar (baliqlar, hasharotlar, ayrim mikroblar) ni misol qilib keltirish mumkin. Òabiiy yorug‘lik manbalaridan quyosh nuri o‘simlik, hayvon va insonlarning hayot manbayidir. Yorug‘likning sun’iy manbalari jumlasiga cho‘g‘langan jismlar, tok o‘tganda nurlanuvchi gazlar, luminessensiyalanuvchi (energiya yutish hisobiga shu’lalanuvchi) qattiq jismlar va suyuqliklar kiradi. Odatda yorug‘lik manbalari ma’lum o‘lchamli jismlar bo‘ladi, lekin ular ko‘pincha nuqtaviy yorug‘lik manbayi deb qabul qilinadi. Agar yorug‘lik manbayining chiziqli o‘lchami shu manbadan uning ta’siri o‘rganilayotgan joygacha bo‘lgan masofaga nisbatan juda kichik bo‘lsa, bunday yorug‘lik manbayi nuqtaviy yorug‘lik manbayi nuqtaviy yorug‘lik manbayi deb ataladi. Yorug‘lik vakuumda c = 300000 km/s tezlik bilan, boshqa muhitlarda esa bundan kichik tezlik bilan tarqaladi. Muayyan to‘lqin uzunlikdagi yorug‘lik, masalan, qizil, yashil, binafsha va shu kabi rangli yorug‘liklar monoxromatik yorug‘likdir. Yorug‘lik turli to‘lqin uzunlikdagi to‘lqinlardan iborat bo‘lsa, bunday yorug‘lik murakkab yorug‘lik deyiladi. Masalan, quyoshdan keladigan yorug‘lik murakkab yorug‘likdir. Yorug‘likning tarqalish qonunlari Yorug‘likning tarqalish qonunlari. Yorug‘likning tarqalish qonunlari geometrik optika yoki nurlar optikasining mazmunini tashkil qiladi. Har qanday to‘lqinlarning, shu jumladan, yorug‘lik to‘lqinlarining ham tarqalish yo‘nalishi nurlar, ya’ni to‘lqin sirtlariga perpendikular bo‘lgan chiziqlar yordamida aniqlanadi: nurlar to‘lqin energiyasining tarqalish yo‘nalishini ko‘rsatadi. Yorug‘- likning tarqalishi yorug‘lik to‘lqinlari energiyasining ko‘chishidan iboratdir. Agar quyosh nurini darchadagi kichik dumaloq teshik orqali o‘tkazib, chetdan turib qarasak, havoda ingichka yorug‘lik dastasini ko‘ramiz — bu yorug‘lik shu’lasidir. Yorug‘lik nuri geometrik tushunchadir. Shunday qilib, yo‘nalishlari fazoning ixtiyoriy nuqtasida yorug‘lik energiyasining ko‘chish yo‘nalishi bilan ustma-ust tushgan geometrik chiziq yorug‘lik nuri yorug‘lik nuri deyiladi. Kuzatishlar, bir jinsli muhitda yorug‘likning to‘g‘ri chiziq bo‘ylab tarqalishini ko‘rsatadi. Yorug‘likning to‘g‘ri chiziq bo‘ylab tarqalishiga nuqtaviy manbadan kelayotgan yorug‘lik yo‘liga qo‘yilgan buyumlar soyasining hosil bo‘lishi yoki nuqtaviy bo‘lmagan manbadan kelayotgan yorug‘lik yo‘liga qo‘yilgan buyumlarning soya va yarim soyalarining hosil bo‘lishi dalil bo‘la oladi. Masalan, S nuqtaviy manbadan kelayotgan yorug‘lik nuri yo‘liga B jismni qo‘yaylik. Yorug‘lik to‘g‘ri chiziq bo‘ylab tarqalgani uchun B jism yorug‘lik nurini to‘sib qoladi. Natijada bu jism orqasida kesik konus shaklida soya hosil bo‘ladi. Bu konus ichidagi biror nuqtaga ham S manbadan kelayotgan yorug‘lik tushmaydi. Shuning uchun bunday konus o‘qiga tik qilib qo‘yilgan E ekranda B jismning aniq B′ soyasi hosil bo‘ladi (2- rasm). Agar S yorug‘lik manbayi nuqtaviy bo‘lmasa, manbaning har bir nuqtasidan jismga tushgan yorug‘lik uning orqasida ayrim konus shaklidagi soyalarni hosil qiladi. Natijada ekranda B4 to‘liq soya to‘liq soya va uning chetlarida B2 B3 ochroq soha hosil bo‘ladi. Bu soha yarim soya deyiladi. Òo‘liq soya sohasidan uzoqlashgan sari yarim soya soya tobora och bo‘la boradi (3- rasm). Noshaffof jismga yorug‘lik manbayidan nurlar tushganda soyaning hosil bo‘lishidan foydalanib, Quyosh va Oy tutilishi hodisalarini izohlash mumkin. Yorug‘lik nurlarining mustaqillik prinsipiga asosan, yorug‘lik nurlari o‘zaro kesishganda bir-biriga hech qanday ta’sir ko‘rsatmaydi, ya’ni nurlarning kesishishi har bir nurning mustaqil ravishda tarqalishiga xalaqit bermaydi. Elektromagnit to‘lqinlarning tarqalish tezligi juda katta bo‘lganligi tufayli uni bevosita kuzatish orqali baholash mumkin emas. Masalan, kechasi projektorni yoqib, undan chiqayotgan yorug‘lik nurini uzoqda turgan biror buyumga yo‘naltirsak, yorug‘lik bir onda tarqalganga o‘xshab tuyuladi. Shu sababli yorug‘likning tarqalishi uchun vaqt talab qilinmaydi, ya’ni uning tarqalish tezligi juda katta degan fikr saqlanib kelgan edi. Lekin fanning rivojlanishi natijasida yorug‘lik tezligining chekli ekanligi ayon bo‘ldi va nihoyat yorug‘lik tezligi aniqlandi. Yorug‘lik tezligini birinchi marta 1676- yilda daniyalik astronom Ryomer Yupiter planetasi yo‘ldoshlarining tutilishi ustida o‘tkazgan astronomik kuzatishlar asosida aniqladi. Ryomerning hisobi bo‘yicha yorug‘lik tezligining qiymati c = 2,15•108 m/s chiqdi



    Download 4,32 Mb.
    1   2   3   4   5   6   7   8




    Download 4,32 Mb.