Namangan Institute of Engineering and Technology nammti uz




Download 15,56 Mb.
Pdf ko'rish
bet313/693
Sana13.05.2024
Hajmi15,56 Mb.
#228860
1   ...   309   310   311   312   313   314   315   316   ...   693
Bog'liq
Тўплам

Methods. We developed a machine learning (ML) model that predicts core indicators of 
frequency stability using techno-economic factors in order to model frequency stability and control 
based on operational data. Time series data, including load, generation, and electricity price time 
series, were utilized as inputs [9]. The time series includes day-ahead accessible data, including 
generation projections, which may be used to predict frequency stability one day in advance, as well 
as ex-post (actually observed) data. We created stability indicators using grid frequency 
measurements [9, 10, 11] in the synchronous regions of Great Britain, Continental Europe, and the 
Nordic as outputs (targets). Instead, we utilized the active control volumes as output data to 
simulate control activation in Germany [12]. All data sources are openly accessible, and the data has 
an hourly or 15-minute resolution. Using a Gradient Boosted Tree (GBT) model to fit the data, we 
were able to map inputs to outputs [5]. Next, we extracted significant input characteristics and 
dependencies from the machine learning model and explained it using Shapely Additive 
Explanations (SHAP), a technique from XAI [9]. This makes transparent day-ahead forecasts possible 
and allows for extensive ex-post interpretations of historical operational data. 
Results. Our approach identified the primary European power systems' frequency stability 
drivers and hazards [12]. Fast generation ramps primarily affect frequency gradients, and we 
identified three distinct kinds of generation types with opposing effects. Electricity pricing and 
prediction mistakes are the main factors influencing the stability indicator, which gauges the 
necessary management effort. Forecast mistakes often account for a large portion of frequency 
variances in the Nordic grid, quick load and generation ramps dominate the Continental European 
system, and renewable energy and electricity pricing play a significant influence in Great Britain.
Additionally, our method clarified how various load and generation parameters lead to 
deterministic frequency deviations (DFDs) [6]. A significant portion of the daily DFD pattern is 
already described by the daily cycle of the load, namely the load gradients. But this strategy doesn't 
work well, particularly before and after midday. We linked this observation to solar power ramps 
by utilising a variety of input characteristics, and we created a model that almost exactly replicates 
the daily DFD pattern in the data. 
Lastly, we examined the historical activation of control power in Germany and its forecast for 
the next day using our methodology [11]. We demonstrated that although prediction errors and the 
generation mix have a significant impact on the control power's activation, it only displays modest 
daily trends. Sufficient prediction error estimates seem to be a crucial element in enhancing the 
control's day-ahead predictability. Generally speaking, either ex-post analysis or day-ahead 
prediction requires the employment of different loss functions and model training techniques. 

Download 15,56 Mb.
1   ...   309   310   311   312   313   314   315   316   ...   693




Download 15,56 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Namangan Institute of Engineering and Technology nammti uz

Download 15,56 Mb.
Pdf ko'rish