4
sonlari va xos vektorlari.
Butun sonlar xalqasida bólinish munosabati. Tub sonlar.
Arifmetikaning
asosiy teoremasi. Eng katta umumiy bóluvchi. Eng kichik umumiy karrali. Yevklid
algoritmi va uning tatbiqlari. Chekli zanjir kasrlar. Munosib kasrlar. Sistematik
sonlar. Taqqoslama, chegirmalar halqasi. Bir ózgaruvchili
birinchi darajali va
yuqori darajali taqqoslamalar. Sonning tartibi. Boshlanǵich ildiz. Tub modul
bóyicha indekslar va ularning tatbiqlari. Lejandr simvoli. Yakobi simvoli.
Taqqoslamalar nazariyasining arifmetik tatbiqlari.
Bir ózgaruvchili kóp hadlar. Bezu teoremasi. Algebraning asosiy teoremasi.
Uchinchi va tórtinchi darajali tenglamalar. Maydonning oddiy kengaytmasi.
Algebraik va transtsendent sonlar. Maydonning algebraik kengaytmasi. Algebraik
sonlar maydoni. Tenglamalarni radikallarda yechish.
3.Geometriya
Vektorlar ustidagi amallar. Vektor fazo. Koordinata sistemalarini
almashtirish. Affin, dekart va qutb koordinatalar sistemalari.
Koordinatalarni
boǵlovchi tenglama va tengsizliklar. Algebraik chiziqlar va ularning tartibi.
Almashtirishlar gruppasi. Tekislikdagi harakatlar klassifikatsiyasi. Geometrik
figuralarning simmetriya gruppasi. Óxshash almashtirishlar gruppasi va uning
gruppaosti. Tekislikdagi affin almashtirishlar. Fazodagi koordinatalar metodi.
Koordinatalarni boǵlovchi tenglama va tengsizliklarning geometrik mánosi.
Fazoda tekislik va tóǵri chiziq. Ellips. Giperbola. Parabola.
Ikkinchi tartibli
chiziqlarning direktrisalari va fokuslari. Ikkinchi tartibli chiziqlarning umumiy
tenglamasi. Ikkinchi tartibli tsilindrik va konus sirtlar. Aylanma sirtlar. TSirkulǵ va
chizǵich yordamida yasash postulatlari. Maktab geometriya kursidagi yasashga
doir masalalar. Tekislikdagi geometrik yasashlarni turli metodlari.
Sirkul va
chizǵich yordamida yechilmaydigan klassik masalalar. Tekis va fazoviy
figuralarning parallel proyektsiyadagi tasvirlari. Aksonometriya. Polǵke-Shvarts
teoremasi. Pozitsion va metrik masalalar. Proyektiv tekislik va proyektiv fazo.
Dezarg teoremasi. Proyektiv akslantirishlar va almashtirishlar. Garmonik
joylashgan tórtta nuqta. Proyektiv tekislikdagi ikkinchi
tartibli chiziqlar va
ularning klassifikatsiyasi. Shteyner va Paskal teoremalari. Yevklid geometriyasi.
N.I.Lobachevskiy geometriyasi. Gilbert aksiomalar sistemasi. Aksiomalar
sistemasining interpretatsiyasi. Aksiomalar sistemasining zidsizligi,
erkinligi va
tóliqligi. Uch ólchovli fazoning Veyl aksiomalar sistemasi. Giperbolik fazo haqida
tushuncha. Giperbolik tekislikning Keli-Kleyn modeli.