• Eyler-Koshining iteratsion metodi
  • FOYDALANILGAN ADABIYOTLAR
  • -§. Eyler va Eyler-Koshi usullari




    Download 103,92 Kb.
    bet4/4
    Sana25.05.2024
    Hajmi103,92 Kb.
    #253917
    1   2   3   4
    Bog'liq
    KURS ISHI

    1.3-§. Eyler va Eyler-Koshi usullari.
    Berilgan ushbu (1) formulada k=0 bo’lgan holda hisoblash jarayoni ,
    (2)
    formula bilan teshkil etiladi. Buni Eyler taklif qilgan, shuning uchun bunday hisoblash jarayoni Eyler me’todi deb yuritiladi. Eyler usulining quyidagicha modifikatsiyasi mavjud.
    Avval quyidagi yaqinlashish

    hisoblanadi, so’ng
    (3)
    formula yordamida nuqtadagi yechimning taqribiy qiymati topiladi.
    Bu yerda

    Ifoda Eyler usulining modifikatsiyasidir.
    Eyler-Koshining modifikatsiyalangan metodi quyidagicha aniqlanadi.
    Avval

    hisoblanadi , so’ng nuqtadagi yechimning taqribiy qiymati
    (4)
    formula bilan aniqlanadi.
    Bu yerda

    Agar masalaning taqribiy yechimini

    deb, uni quyidagi
    (5)
    iteratsion jarayon bilan berilgan aniqlik miqdorida topilsa (5) ifoda Eyler-Koshining iteratsion metodi deyiladi.
    Xulosa qilib aytganda , ushbu Eyler va Eyler-Koshi usullari epidemiyaning SIR modelini sonli yechishda samarali usullardan biri hisoblanadi. Bu usullar ushbu jarayonlarning dasturini tuzishda ham qo’l keladi.
    Dissertatsiya mavzusining tenglamasi quyidagicha:
    (1)
    t = 0 da boshlang’ich shartlar bilan:
    (2)
    FOYDALANILGAN ADABIYOTLAR
    1. Allen LJ. A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Modell. 2017;2(2):128–142. [PMC free article] [PubMed] [Google Scholar]
    2. Anderson KB, Thomas SJ, Endy TP. The emergence of zika virus. Ann. Intern. Med. 2016;165(3):175–183. doi: 10.7326/M16-0617. [PubMed] [CrossRef] [Google Scholar]
    3. Anderson R, May R. Infectious Diseases of Humans: Dynamics and Control. Dynamics and Control. Oxford: OUP; 1992. [Google Scholar]
    4. Anderson W. Continuous-time Markov Chains: an Applications-Oriented Approach. Springer Series in Statistics. New York: Springer; 2012. [Google Scholar]
    5. Arenas A, Cota W, Gómez-Gardeñes J, Gómez S, Granell C, Matamalas JT, Soriano-Paños D, Steinegger B. Modeling the spatiotemporal epidemic spreading of covid-19 and the impact of mobility and social distancing interventions. Phys. Rev. X. 2020;10:041055. doi: 10.1103/PhysRevX.10.041055. [CrossRef] [Google Scholar]
    6. Azevedo L, Pereira MJ, Ribeiro MC, Soares A. Geostatistical covid-19 infection risk maps for portugal. Int. J. Health Geogr. 2020;19(1):1–8. doi: 10.1186/s12942-020-00221-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    7. Bailey NTJ. The Mathematical Theory of Infectious Diseases and Its Applications. London: Charles Griffin Company Limited; 1975. [Google Scholar]
    8. Balcan D, Gonçalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling the spatial spread of infectious diseases: the global epidemic and mobility computational model. J. Comput. Sci. 2010;3:132–145. doi: 10.1016/j.jocs.2010.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    9. Barabási AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512. doi: 10.1126/science.286.5439.509. [PubMed] [CrossRef] [Google Scholar]
    10. Barrat A, Barthélemy M, Vespignani A. Dynamical Processes on Complex Networks. Cambridge: Cambridge University Press; 2008. [Google Scholar]
    11. Bauch CT, Galvani AP. Social factors in epidemiology. Science. 2013;342(6154):47–49. doi: 10.1126/science.1244492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    12. Bautista LE. Maternal zika virus infection and newborn microcephaly–an analysis of the epidemiological evidence. Ann. Epidemiol. 2018;28(2):111–118. doi: 10.1016/j.annepidem.2017.11.010. [PubMed] [CrossRef] [Google Scholar]
    13. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. Imbalanced host response to sars-cov-2 drives development of covid-19. Cell. 2020;181(5):1036–1045.e9. doi: 10.1016/j.cell.2020.04.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    14. Brooks-Pollock E, de Jong M, Keeling M, Klinkenberg D, Wood J. Eight challenges in modelling infectious livestock diseases. Epidemics. 2015;10:1–5. doi: 10.1016/j.epidem.2014.08.005. [PubMed] [CrossRef] [Google Scholar]
    15. Caldarelli G. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford: Oxford University Press; 2007. [Google Scholar]
    16. Carias, C., O’Hagan, J.J., Gambhir, M., Kahn, E.B., Swerdlow, D.L., Meltzer, M.I.: Forecasting the 2014 west African ebola outbreak. Epidemiol. Rev. 41(1), 34–50 (2019) [PubMed]
    17. Castellano C, Pastor-Satorras R. Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 2010;105:218701d. doi: 10.1103/PhysRevLett.105.218701. [PubMed] [CrossRef] [Google Scholar]
    18. Castro, M., Ares, S., Cuesta, J.A., Manrubia, S.: Predictability: can the turning point and end of an expanding epidemic be precisely forecast? 2004.08842 (2020) [PMC free article] [PubMed]
    19. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, Leskovec J. Mobility network models of covid-19 explain inequities and inform reopening. Nature. 2021;589(37):82–87. doi: 10.1038/s41586-020-2923-3. [PubMed] [CrossRef] [Google Scholar]
    20. Choi, B.C.K.: The past, present, and future of public health surveillance. Scientifica 2012 (2012) [PMC free article] [PubMed]
    21. Colizza V, Vespignani A. Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 2007;99:148701. doi: 10.1103/PhysRevLett.99.148701. [PubMed] [CrossRef] [Google Scholar]
    22. Costa GS, Cota W, Ferreira SC. Outbreak diversity in epidemic waves propagating through distinct geographical scales. Phys. Rev. Res. 2020;2:043306. doi: 10.1103/PhysRevResearch.2.043306. [CrossRef] [Google Scholar]
    23. Cota W, Ferreira SC. Optimized gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks. Comput. Phys. Commun. 2017;219:303–312. doi: 10.1016/j.cpc.2017.06.007. [CrossRef] [Google Scholar]
    24. Cutts F, Dansereau E, Ferrari M, Hanson M, McCarthy K, Metcalf C, Takahashi S, Tatem A, Thakkar N, Truelove S, Utazi E, Wesolowski A, Winter A. Using models to shape measles control and elimination strategies in low- and middle-income countries: a review of recent applications. Vaccine. 2020;38(5):979–992. doi: 10.1016/j.vaccine.2019.11.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    25. Dave K, Lee PC. Global geographical and temporal patterns of seasonal influenza and associated climatic factors. Epidemiol. Rev. 2019;41(1):51–68. doi: 10.1093/epirev/mxz008. [PubMed] [CrossRef] [Google Scholar]
    26. de Arruda GF, Rodrigues FA, Moreno Y. Fundamentals of spreading processes in single and multilayer complex networks. Phys. Rep. 2018;756:1–59. doi: 10.1016/j.physrep.2018.06.007. [CrossRef] [Google Scholar]
    27. Dye C, Mertens T, Hirnschall G, Mpanju-Shumbusho W, Newman RD, Raviglione MC, Savioli L, Nakatani H. Who and the future of disease control programmes. The Lancet. 2013;381(9864):413–418. doi: 10.1016/S0140-6736(12)61812-1. [PubMed] [CrossRef] [Google Scholar]
    28. Emanuel EJ. The lessons of sars. Ann. Intern. Med. 2003;139(7):589–591. doi: 10.7326/0003-4819-139-7-200310070-00011. [PubMed] [CrossRef] [Google Scholar]
    29. Erdős P, Rényi A. On random graphs. Publicationes Mathematicae Debrecen. 1959;6:290–297. doi: 10.5486/PMD.1959.6.3-4.12. [CrossRef] [Google Scholar]
    30. Estrada E. Covid-19 and sars-cov-2. modeling the present, looking at the future. Phys. Rep. 2020;869:1–51. doi: 10.1016/j.physrep.2020.07.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    31. Estrada E. Topological analysis of sars cov-2 main protease. Chaos: an Interdisciplinary. J. Nonlinear Sci. 2020;30(6):061102. [PMC free article] [PubMed] [Google Scholar]
    32. Fauci AS, Macher AM, Longo DL, Lane HC, Rook AH, Masur H, Gelmann EP. Acquired immunodeficiency syndrome: epidemiologic, clinical, immunologic, and therapeutic considerations. Ann. Intern. Med. 1984;100(1):92–106. doi: 10.7326/0003-4819-100-1-92. [PubMed] [CrossRef] [Google Scholar]
    33. Ferreira SC, Castellano C, Pastor-Satorras R. Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E. 2012;86:041125. doi: 10.1103/PhysRevE.86.041125. [PubMed] [CrossRef] [Google Scholar]
    34. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976;22(4):403–434. doi: 10.1016/0021-9991(76)90041-3. [CrossRef] [Google Scholar]
    35. Gog JR. How you can help with covid-19 modelling. Nat. Rev. Phys. 2020;2(6):274–275. doi: 10.1038/s42254-020-0175-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    36. Gómez S, Arenas A, Borge-Holthoefer J, Meloni S, Moreno Y. Discrete-time Markov chain approach to contact-based disease spreading in complex networks. EPL (Europhys. Lett.) 2010;89(3):38009. doi: 10.1209/0295-5075/89/38009. [CrossRef] [Google Scholar]
    37. Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente CJ, Moreno Y, Arenas A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 2013;110:028701. doi: 10.1103/PhysRevLett.110.028701. [PubMed] [CrossRef] [Google Scholar]
    38. Goufo, E.F.D., Noutchie, S.C.O., Mugisha, S.: A fractional seir epidemic model for spatial and temporal spread of measles in metapopulations. Abstract Appl. Anal. 2014(781028),(2014)
    39. Grant R, Malik MR, Elkholy A, Van Kerkhove MD. A review of asymptomatic and subclinical middle east respiratory syndrome coronavirus infections. Epidemiol. Rev. 2019;41(1):69–81. doi: 10.1093/epirev/mxz009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    40. Heesterbeek, H., Anderson, R.M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., Eames, K.T.D., Edmunds, W.J., Frost, S.D.W., Funk, S., Hollingsworth, T.D., House, T., Isham, V., Klepac, P., Lessler, J., Lloyd-Smith, J.O., Metcalf, C.J.E., Mollison, D., Pellis, L., Pulliam, J.R.C., Roberts, M.G., Viboud, C.: Modeling infectious disease dynamics in the complex landscape of global health. Science 347(6227),(2015) [PMC free article] [PubMed]
    41. Huang R, Liu M, Ding Y. Spatial-temporal distribution of covid-19 in china and its prediction: a data-driven modeling analysis. J. Infect. Dev. Ctries. 2020;14(3):246–253. doi: 10.3855/jidc.12585. [PubMed] [CrossRef] [Google Scholar]
    42. Imai, N., Cori, A., Dorigatti, I., Baguelin, M., Donnelly, C.A., Riley, S., Ferguson, N.M.: Report 3—transmissibility of 2019-ncov. WHO collaborating centre for infectious disease modelling, pp 689–697 (2020)
    43. Julia C, Valleron AJ. Louis-rené villermé (1782–1863), a pioneer in social epidemiology: re-analysis of his data on comparative mortality in paris in the early 19th century. J. Epidemiol. Commun. Health. 2011;65(8):666–670. doi: 10.1136/jech.2009.087957. [PubMed] [CrossRef] [Google Scholar]
    44. Keeling MJ, Rohani P. Model. Infect. Dis. Hum. Anim. Princeton, Oxford: Princeton University Press; 2008. [Google Scholar]
    45. Kermack WO, McKendrick AG, Walker GT. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 1927;115(772):700–721. [Google Scholar]
    46. Klepac, P., Kucharski, A.J., Conlan, A.J., Kissler, S., Tang, M., Fry, H., Gog, J.R.: Contacts in context: large-scale setting-specific social mixing matrices from the bbc pandemic project. medRxiv (2020)
    47. Koher A, Lentz HHK, Gleeson JP, Hövel P. Contact-based model for epidemic spreading on temporal networks. Phys. Rev. X. 2019;9:031017. [Google Scholar]
    48. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease-2019 (covid-19): the epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    49. Lauer S, Grantz K, Bi Q, Jones F, Zheng Q, Meredith H, Azman A, Nand Lessler Reich J. The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172:577–582. doi: 10.7326/M20-0504. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    50. Leung GM, Hedley AJ, Ho LM, et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann. Intern. Med. 2004;141(9):662–673. doi: 10.7326/0003-4819-141-9-200411020-00006. [PubMed] [CrossRef] [Google Scholar]
    51. Linka K, Peirlinck M, Costabal FS, Kuhl E. Outbreak dynamics of covid-19 in Europe and the effect of travel restrictions. Comput. Methods Biomech. Biomed. Engin. 2020;23(11):710–717. doi: 10.1080/10255842.2020.1759560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    52. Maheshwari P, Albert R. Network model and analysis of the spread of covid-19 with social distancing. Netw. Sci. Appl. 2020 doi: 10.1007/s41109-020-00344-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    53. Manchein C, Brugnago EL, da Silva RM, Mendes CFO, Beims MW. Strong correlations between power-law growth of covid-19 in four continents and the inefficiency of soft quarantine strategies. Chaos: An Interdisciplinary. J. Nonlinear Sci. 2020;30(4):041102. [PMC free article] [PubMed] [Google Scholar]
    54. Marro J, Dickman R. Nonequilibrium Phase Transitions in Lattice Models. Cambridge: Cambridge University Press; 1999. [Google Scholar]
    55. Metcalf C, Edmunds W, Lessler J. Six challenges in modelling for public health policy. Epidemics. 2015;10:93–96. doi: 10.1016/j.epidem.2014.08.008. [PubMed] [CrossRef] [Google Scholar]
    56. Morabia A. P. c. a. louis and the birth of clinical epidemiology. J. Clin. Epidemiol. 1996;49(12):1327–1333. doi: 10.1016/S0895-4356(96)00294-6. [PubMed] [CrossRef] [Google Scholar]
    57. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004;430(6996):242–249. doi: 10.1038/nature02759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    58. Morse SS. Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1995;1:7–15. doi: 10.3201/eid0101.950102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    59. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. Community structure in time-dependent, multiscale, and multiplex networks. Science. 2010;328(5980):876–878. doi: 10.1126/science.1184819. [PubMed] [CrossRef] [Google Scholar]
    60. Nii-Trebi, N.I.: (2017) Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res. Int. (2017) [PMC free article] [PubMed]
    61. de Oliveira MM, Dickman R. How to simulate the quasistationary state. Phys. Rev. E. 2005;71:016129. doi: 10.1103/PhysRevE.71.016129. [PubMed] [CrossRef] [Google Scholar]
    62. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2001;86:3200–3203. doi: 10.1103/PhysRevLett.86.3200. [PubMed] [CrossRef] [Google Scholar]
    63. Paneth AN. Assessing the contributions of john snow to epidemiology: 150 years after removal of the broad street pump handle. Epidemiology. 2004;15:514–516. doi: 10.1097/01.ede.0000135915.94799.00. [PubMed] [CrossRef] [Google Scholar]
    64. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015;87:925–979. doi: 10.1103/RevModPhys.87.925. [CrossRef] [Google Scholar]
    65. Pedrosa NL, Albuquerque NLS. Spatial analysis of covid-19 cases and intensive care beds in the state of ceará, brazil. Cien. Saude Colet. 2020;25:2461–2468. doi: 10.1590/1413-81232020256.1.10952020. [PubMed] [CrossRef] [Google Scholar]
    66. Ribeiro, M.H.D.M., da Silva, R.G., Mariani, V., dos Santos, C.L.: Short-term forecasting covid-19 cumulative confirmed cases: perspectives for Brazil. Chaos Solitons Fractals, 1–10 (2020) [PMC free article] [PubMed]
    67. Riedel S. Edward jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 2005;18:21–25. [PMC free article] [PubMed] [Google Scholar]
    68. Rothman KJ. Lessons from John Graunt. Lancet. 1996;347(8993):37–39. doi: 10.1016/S0140-6736(96)91562-7. [PubMed] [CrossRef] [Google Scholar]
    69. Sharkey KJ. Deterministic epidemic models on contact networks: correlations and unbiological terms. Theor. Popul. Biol. 2011;79(4):115–129. doi: 10.1016/j.tpb.2011.01.004. [PubMed] [CrossRef] [Google Scholar]
    70. Silva-Júnior, M., Mendonça, K., Lima, C., Pires, P.L.S., Calegari, T., Oliveira, S.: Analysis of the spatial-temporal dynamics of incidence, mortality and test rates (rapid and rt-pcr) of covid-19 in the state of minas Gerais, Brazil. Scielo Preprint pp 1–16 (2020)
    71. Small M, Cavanagh D. Modelling strong control measures for epidemic propagation with networks—a covid-19 case study. IEEE Access. 2020;8:109719–109731. doi: 10.1109/ACCESS.2020.3001298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    72. Smith K. Louis pasteur, the father of immunology? Front. Immunol. 2012;3:68. doi: 10.3389/fimmu.2012.00068. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    73. Thurner S, Klimek P, Hanel R. A network-based explanation of why most covid-19 infection curves are linear. Proc. Natl. Acad. Sci. 2020;117(37):22684–22689. doi: 10.1073/pnas.2010398117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    74. Trawicki, M.: Deterministic seirs epidemic model for modeling vital dynamics, vaccinations, and temporary immunity. Mathematics 5(7) (2017)
    75. Trilla, A., Trilla, G., Daer, C.: The 1918 “spanish flu” in Spain. Clin. Infect. Dis. 47(5), 668–673 (2008) [PubMed]
    76. Tulu TW, Tian B, Wu Z. Mathematical modeling, analysis and Markov chain Monte Carlo simulation of ebola epidemics. Res. Phys. 2017;7:962–968. [Google Scholar]
    77. Vermeil T, Peters A, Kilpatrick C, Pires D, Allegranzi B, Pittet D. Hand hygiene in hospitals: anatomy of a revolution. J. Hosp. Infect. 2019;101(4):383–392. doi: 10.1016/j.jhin.2018.09.003. [PubMed] [CrossRef] [Google Scholar]
    78. Wang P, Ja Lu, Zhu M, Wang L, Chen S. Statistical and network analysis of 1212 covid-19 patients in Henan, China. Int. J. Infect. Dis. 2020;95:391–398. doi: 10.1016/j.ijid.2020.04.051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    79. Wells CR, Sah P, Moghadas SM, Pandey A, Shoukat A, Wang Y, Wang Z, Meyers LA, Singer BH, Galvani AP. Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc. Natl. Acad. Sci. U.S.A. 2020;117(13):7504–7509. doi: 10.1073/pnas.2002616117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    80. WHO (2021) World health organization. https://www.who.int/ [PubMed]
    81. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. Lancet. 2020;395:689–697. doi: 10.1016/S0140-6736(20)30260-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    82. Xia Y, Bjørnstad ON, Grenfell BT. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am. Nat. 2004;164(2):267–281. doi: 10.1086/422341. [PubMed] [CrossRef] [Google Scholar]
    83. Zarocostas J. How to fight an infodemic. The Lancet. 2020;395(10225):676. doi: 10.1016/S0140-6736(20)30461-X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    84. Zhao S, Zhuang Z, Cao P, Ran J, Gao D, Lou Y, Yang L, Cai Y, Wang W, He D, Wang MH. Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-ncov) cases from wuhan, china in 2020: a correlational analysis. J. Travel Med. 2020;27(2):taaa0222. doi: 10.1093/jtm/taaa022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    85. Y. Chen, J. Cheng, Y. Jiang and K. Liu. A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification. Journal of Inverse and Ill-posed Problems. 2020. Vol.28, Issue 2. P. 243–250.
    86. Kermack, W. O.; McKendrick, A. G. A Contribution to the Mathematical Theory of Epidemics // Proceedings of the Royal Society, 1927. Vol. 115, No. A771, P.700-721.
    87. Edelstein-Keshet L. Mathematical Models in Biology. Society for Industrial and Applied Mathematics, 2005.
    88. Kabiljanova F.A., Boltaboyeva N.I. O’zbekistonda COVID-19 koronavirus epidemiyasining tarqalishini matematik modellashtirish // “Innovative developments and research in education” International scientific-online conference, Canada, 2022, P. 132-136.
    89. Эйлер Л. Интегральное исчисление, том 1, раздел 2, гл. 7
    90. Yu.Sh.Bakhramova, A.A.Akbarova, D.K.Muhamediyeva larning Tibbiy emlashni hisobga olgan holda epidemiyaning matematik modelini tuzish hamda sonli hisoblash nomli maqolasi.


    Download 103,92 Kb.
    1   2   3   4




    Download 103,92 Kb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    -§. Eyler va Eyler-Koshi usullari

    Download 103,92 Kb.