• FOYDALANILGAN ADABIYOTLAR
  • Shunday qilib, bizning modelimiz uchun aniqlik quyidagicha bo'ladi




    Download 19,5 Kb.
    bet5/5
    Sana14.05.2024
    Hajmi19,5 Kb.
    #231709
    1   2   3   4   5
    Bog'liq
    M o` 1

    Shunday qilib, bizning modelimiz uchun aniqlik quyidagicha bo'ladi:


    Bizning modelimiz "Men kasal odamlarni 96% vaqtni bashorat qila olaman" deydi. Biroq, u buning aksini qilmoqda. Kasallar virusni tarqatayotganda kasal bo'lmaydigan odamlarni 96% aniqlik bilan bashorat qilmoqda!
    Bu yerda biz aniqlik (precision) va eslab qolish (recall) ning ikki tomonlama tushunchasiga duch kelamiz.
    Aniqlik bizga to'g'ri bashorat qilingan holatlarning qanchasi ijobiy bo'lganini aytadi. Aniqlikni va eslab qolishni(recall) qanday hisoblash mumkin:































    XULOSA


    Mashinalarni o'rganish va IoT bizning muloqot qilish va kundalik hayotimizni yaxshilaydi. Uy atrofidagi asboblarni boshqarish uchun miya to'lqinlariga javob beradigan AlterEgo garniturasi kabi aqlni o'qish texnologiyasida ta'sirchan yutuqlarga erishilmoqda. Ushbu texnologiya bir muncha vaqt davomida ishlab chiqilmoqda va AlterEgo hali ham biroz noqulay ko'rinishga ega bo'lsa-da, keyingi o'n yil ichida uning kiyinish qobiliyati qanday yaxshilanishini tasavvur qilish qiyin emas. Uyingizdagi jihozlardan foydalanish uslubingizni o'zgartirish uchun ushbu yutuqlarning oqibatlarini tasavvur qilish juda hayajonli.
    Demak, mashinaviy o’qitish hozirgi kunda barcha sohalarda aynan insoniyat hozirgi vaqtda xohlayotgan va qurayotgan kelajakni yaratishga qaratilganligini ko’rishimiz mumkin. Bundan xulosa qilishimiz mumkinki, bu soha kelajakda hozirgi kungi talabdan ancha ko’tarilishi shubhasiz.

    FOYDALANILGAN ADABIYOTLAR


    1. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 54(1), 99–114 (2006)
    2. Aggarwal, C.C. (ed.): Data Classification: Algorithms and Applications. CRC Press, Boca Raton (2014)
    3. Allen, E., Allen, L., Arciniega, A., Greenwood, P.: Construction of equivalent stochastic differential equation models. Stoch. Anal. Appl. 26, 274–297 (2008)
    4. Anderson, C.: The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired Magazine https://www.wired.com/2008/06/pb-theory/ (2008)
    5. Aue, A., Horváth, L.: Structural breaks in time series. J. Time Ser. Anal. 34(1), 1–16 (2013)
    6. Berger, R.E.: A scientific approach to writing for engineers and scientists. IEEE PCS Professional Engineering Communication Series IEEE Press, Wiley (2014)
    7. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for meta-model validation with recommendations for evolutionary computation. Evol. Comput. 20(2), 249–275 (2012)
    8. Bischl, B., Schiffner, J., Weihs, C.: Benchmarking local classification methods. Comput. Stat. 28(6), 2599–2619 (2013)
    9. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. arXiv preprint arXiv:1606.04838 (2016)
    10. Brown, M.S.: Data Mining for Dummies. Wiley, London (2014) 11. Bühlmann, P., Van De Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Berlin (2011), etc
    Download 19,5 Kb.
    1   2   3   4   5




    Download 19,5 Kb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Shunday qilib, bizning modelimiz uchun aniqlik quyidagicha bo'ladi

    Download 19,5 Kb.