Qo`shish
|
|
Ayirish
|
|
Ko`paytirish
|
0+0=0
|
|
00=0
|
|
0*0=0
|
0+1=1
|
|
10=1
|
|
0*1=0
|
1+0=1
|
|
11=0
|
|
1*0=0
|
1+1=10
|
|
101=1
|
|
1*1=1
|
Ikkilik tizimida ba’zi arifmetik amallarning bajarilishini ko`rib chiqamiz.
Misol 1. 1101012 va 1100112 ning yig`indisini hisoblang.
Yechish.
1101012
|
+
|
1100112
|
11010002
|
Misol 2. 1011,1012 va 1101,0012 ning yig`indisini hisoblang.
Yechish.
1011,1012
|
+
|
1101,0012
|
11000,1102
|
Misol 3. 101012 va 10102 ning ayirmasini hisoblang.
Yechish.
Misol 4. 1012 va 102 ning ko`paytmasini hisoblang.
Yechish. Ikkilik sanoq tizimida ko`paytirish xuddi o`nlik sanoq tizimdagidek bajariladi, faqat qo`shishda ikkilik tizimdagidek qo`shilad
Misol 5. 101,112 va 11,012 ning ko`paytmasini hisoblang.
Yechish.
Misol 9. 3710 sonini ikkilik sanoq tizimida yozing.
Yechish.
Natija: 3710=1001012
Misol 10. O`nlik sanoq tizimidagi 0,25 sonni ikkilik sanoq tizimida yozing.
Yechish.
Natija: 0,012
Topshiriqlar:
1. a) 111+100 b) 1101+1101 c) 1011+1001
d ) 1010+11 e) 1110+1111 f) 11,001+101,11
g) 10,11+11,111 h) 110,01+11,101 i) 111,101+111
2. a) 1010-110 b) 1100-11 c) 1011-101,11
d) 11011,11-101,01 e) 1111-10,11 f) 1101,101-1001,01
g) 10010,01-111,1 h) 110001-11,01 i) 10000-100,11
3. a) 101 11 b) 110 101 c) 111 11
d) 1011 11,01 e) 1111,01 101 g) 101,11 1,101
g) 11010,11 10,01 h) 111 11,101 i) 100101 101,011
4. a) 11110 : 101 b) 1011010 : 1111 c) 1111 : 101
d) 11010,01 : 101,01 e) 1000,1111 : 10,11 f) 1101,1 : 1100
g) 10111,101 : 0,11 h) 1111000001 : 11111 i) 1111110 : 1,11
5. Ikkilik sanoq sistemasida amallarni bajaring:
a) 10010 + 127 +125 +123 +1 20 b) 1100 + 123 +1 21 +1 2-1 +1 2-2
c) 1111,101 + 1 23 + 1 20 d) 1001,1 (1 24 + 1 23 + 1 22 + 1 21)
e) 122+121+120+12-2 +10,001 f) 120+12-1+12-3+1000111
g) 127+123-1,1 h) 11010111-(125+123+12-1)
Mustahkamlash uchun savol va topshiriqlar
Uyga vazifa: 1-5 topshiriqlar
21-mashg’ulot:
Sanoq sistemalari ustida bajariladigan amallar
Mashg`ulot maqsadi:
A)Ta`limiy maqsad: O`quvchilarga sanoq sistemalari
haqida tushunchalar berish;
B) Tarbiyaviy maqsad: O`quvchilarni estetik tarbiya ruhida tarbiyalash;
C) Rivojlantiruvchi: O`quvchilarning sanoq sistemalari
haqidagi bilimlarini rivojlantirish.
Kompetensiya:
(TK2) Axborotlarni elektron vositalarda qayta ishlash va saqlash kompetensiyasi:— sanoq sistemalarida ishlashni bilish:.
(FK2) — O’quvchida axborotlarni elektron vositalarda qayta ishlash va saqlash kompetensiyasi shakllanad
Mashg’ulotning borishi
Tashkiliy qism
1) Salomlashish;
2) Davomatni aniqlash;
Takrorlash.
Yangi mavzuni o`rganish.
Misollar yechish:
1-misol. Тekshirish:
a). 101101110112 b). 111011001102
+ 1101010112 - 101101110112
111011001102 1101010112
2-misol. Тekshirish:
a). 101101110112 b). 111011001102
+ 1101010112 - 101101110112
111011001102 1101010112
2. Ayirish amal
Eslatma: 1) 1-0=1; 2) 10-1=1; 3) 11-1=10; 4) 100-1=11; 5) 101-1=100;
6) 110-1=101; 7)111-1=110; 8) 1000-1=111; 9)1001-1=1000.
3-misol. Тekshirish:
1 101001101101102 110010010001112
110111011011112 + 110111011011112
110010010001112 1101001101101102
4-misol. Тekshirish:
10001000100002 1101101101012
1101101101012 + 11010110112
11010110112 10001000100002
3. Ko’paytirish amal
Eslatma: 1) 0 * 0 = 0; 2)1 * 0 = 0; 3)0 * 1 = 0; 4) 1 * 1 = 1; 5) 10 * 1 = 10;
5-misol. 1011012
x 101112
101101
101101
+ 101101
000000
101101
111110010112
6-misol. 10111102
Х 1011012
1011110
0000000
1011110
1011110
0000000
1011110 oopo
10000100001102
Izoh:
Birinchi ustunga 0 tushadi;
Ikkinchi ustunga 1+0=1 tushadi;
Uchinchi ustunga 1+0+0=1 tushadi;
Тo’rtinchi ustunda 1+0+1+0=10, bu ustunda 10 ning 0 ini yozib, 1 ni beshinchi ustunga o’tkazamiz;
Beshinchi ustunda 1+0+1+1+0+1=100; Bu yerda 1 to’rtinchi ustundagi yoddagi bir soni, 100 dagi 00 yozilib, 1 soni yettinchi ustunga o’tadi;
Oltinchi ustunda 0+0+1+1+0+0=10, bu ustunda 10 ning 0 ini yozib, 1 ini yettinchi ustunga o’tkazamiz;
Yettinchi:1+0+1+1+0+1+ 1+1=110, bu yerda 1 beshinchi ustundan o’tgan son 1 esa oltinchi ustundan o’tgan son bo’lib, bu ustundagi 110 ning 0 ini yozib olamiz hamda yoddagi bitta 1 ni sakkizinchi ustunga, bitta 1 ni esa to’qqizinchi ustunga o’tkazamiz;
Sakkizinchi ustun: 0+0+1+0+1+1= 11, bu ustundagi 1 soni to’qqizinchi ustunga o’tadi, 1 esa yettinchi ustundan o’tgan yoddagi 1 sonidir;
Тo’qqizinchi ustun: 1+0+0+1+1+1 =100, bunda 100 sonidagi 1 ni o’n birinchi ustunga o’tkazamiz, bu yerda 1 8-ustundan o’tgan yoddagi bir, 1 esa yettinchi ustundan o’tgan;
O’ninchi ustun: 1+0+1 =10, bunda 10 sonidagi 1 o’n birinchi ustunga o’tadi;
O’n birinchi ustun: 0+0+1+1 = 10, bunda 10 sonidagi 1 o’n ikkinchi ustunga o’tadi, 1 to’qqizinchi ustundan, 1 esa o’ninchi ustundan o’tgan.
O’n ikkinchi ustun: 1+ 1 = 10, bunda 1 o’n birinchi ustundan o’tgan.
4. Bo’lish amal
7 – misol. 1101112 : 10112 = ?
Yechish: Bo’linmani topish uchun ikkilik sanoq sistemasida berilgan sonlarni o’nlik sanoq sistemasiga o’tkazib olamiz.
1 ) 11001112 Х10; 1101112=1*25+1*24+0*23+1*22+1*21+1*20=32+16+4+2+1=5510;
2 ) 10112 = Х10; 10112= 1*23+0*22+1*21+1*20=8+2+1=1110;
3) 5510:1110=510;
4) 3-ustundagi natija 510 ni ikkilik asosiga o’tkazamiz.
5 10 Х2; 5 2
4 2 2
1 2 1
0
J: 1101112 : 10112 =1012.
5. Kasriy sonlar ustida amallar:
8-misol. Тekshirish:
1 11011,1012 1010010,010012
10110,101012 111011,1012
1010010,010012 010110,101012
9-misol. Тekshirish:
1 10101,10112 111,111112
101101,101112 101101,101112
000111,111112 110101,101102
10-misol.
1011,102
x 10,112
101110
101110
000000
101110
11111,10102
11-misol. 10000,12:1,12=
1) 10000,12 => X10; 10000,12=1*24+0*23+0*22+0*21 +0*20+ 1*2-1=16+0,5=16,510;
2) 1,12 => X10; 1,12=1*20+1*2-1=1+0,5=1,510;
3) 16,510:1,510=1110; 4) 1110=> X2;
11 2
10 5 2
1 4 2 2
1 2 1
0
Demak: 10000,12:1,12=10112;
12-misol. 11001,112:0,012 = ?
1) 11001,112 => X10; 11001,112=1*24+1*23+0*22+0*21 +1*20+ 0*2-11*2-2 =16+8+0+0+1+ + =25+0,5+0,25=25,7510;
2) 0,012 => X10; 0,012=0*20+0*2-1+0*2-2=0+0+ =0+0,25=0,2510;
3) 25,7510:0,2510=10310;
4) 10310=> X2;
103 2
102 51 2
1 50 25 2
1 24 12 2
1 12 6 2
0 6 3 2
0 2 1
1
Demak: 11001,112:0,012 =11001112;
Topshiriqlar:
1. Bajarilgan amallardan qaysi biri noto‘g‘ri bajarilgan:
a) 101-11=11
d) 1111=1001
g) 1001-11 =100
k) 11100:11=1001
|
b) 111010+10=111100
e) 10101110=10101100
h) 1110,01+1,01=111110
l) 100,101-1,010=11,011
|
c)110011,001-1,011=111110,1
f) 111111010=100110110
i)11001,1-110,11=10010,11
m)110100:1101=100
|
2. Sonlarni taqqoslang.
a) 1101+11 va 1111 +10
c) 11101-11 va 111+11
e) 11011101 va 10111011
g) 111111:11 va 1010111
i)111,011111,1101 va 111,1001111,101
l)1111+110001 va 11110011-11001
|
b) 1001,11+101,01 va 1101,01-101,11
d) 1110,01+101 va 10010,01
f) 1101,011-11,01 va 1011,001
h) 11100111:11 va 1010111:11
k) 1,001001+0,0101 va 1,11101-0,00001
m) 10101 va 1110+111
|
3. Tenglamalarni ikkilik sanoq sistemasida yeching.
a) x + 1001 = 1000
c) (101x-100)/10 = (x+10)/100
e) 1101(x+1101) = x- 10101
g) x10+100x+100=0
i) x10+101x+10=0
l) x10-110001=0
|
|
|