Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming




Download 15,84 Mb.
Pdf ko'rish
bet167/551
Sana15.05.2024
Hajmi15,84 Mb.
#234763
1   ...   163   164   165   166   167   168   169   170   ...   551
Bog'liq
Asosiy oxirgi 17.05.2023 18.20

Methods: 
Due to their unique characteristics, sign languages differ from other natural 
languages and are not universally underset. Each gesture and phrase is make up of a 
specific combination of signals and conveys a specific meaning within its series. The 
fingerspelling alphabet represents each letter of the corresponding language and can be 
used to spell names, abbreviations, and unfamiliar words [18]. To address the issue of 
insufficient information, Uzbek Sign Language utilized a two-phase transfer learning 
method based on Convolutional Neural Networks (CNNs) with the ImageNet and Kaggle 
ASL datasets. The model was then apply to the UzSL dataset and evaluated using test data. 
Sign languages offer innovative and creative aspects that can facilitate human interaction 
within the system. 
Dataset: 
In UzSL fingerspelling, each letter is denote by a sign or symbol, and phrases 
are form by concatenating specific gesture signals. The fingerspelling alphabet is a subset 
of characters that represents the letters of the target language and is commonly us by 
individuals with hearing or speech impairments. The UzSL fingerspelling alphabet consists 
of 30 letters that are similar to the letters in the Uzbek language alphabet. Each class of 
UzSL fingerspelling contains 200 images that show various signals of each letter. It is 
interesting to use these images when learning about image data. The UzSL fingerspelling 
alphabet comprises 28 static letters and 2 dynamic letters. The dynamic letters can pose 
accuracy and usage challenges, so we decided to use only the final frames during training to 
address this issue. 
 
Figure 3. UzSL Sign Language Model, a Native Visual Communication 
Tool for the Hearing/Speech Impaired Community. 
 
Figure 1. Creating a dataset based on the dactyl alphabet 
based on the Latin script of the Uzbek language. 


208 
The Media Pipeline library was utilize to extract features, which is beneficial in teaching 
the model the necessary hand characteristics during signing. The use of pictorial models 
captures key hand placement points, emphasizes small differences between characters, and 
prioritizes the signer's hand over the background. 
K points are establish in each frame, with K being the number of frames. Each identified 
point is represented as 
[ ] 
[ ]
[ ]
, where i = 1, 2, 3, …, N, and j = 1, 2, 3, …, K. For 
static gestures, all designated points should maintain their coordinates over time. This 
applies to the dynamic six letters as well, as they are treat as static, and the last frames of 
their respective videos are take [13]. The evaluation point, 
[ ] 
[ ]
[ ]
, bu yerda 
[ ]

[ ]

[ ]

[ ]
, was employed. In our study, each hand displays 28 
symbols. 
Trening: 
Transfer learning techniques offer a solution to the problems of learning and 
computing data that are invisible to computers. This approach presents two main 
advantages. Firstly, it avoids the challenge of training large data sets from the beginning, 
and secondly, it reduces the high computational resource requirements. 

Download 15,84 Mb.
1   ...   163   164   165   166   167   168   169   170   ...   551




Download 15,84 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming

Download 15,84 Mb.
Pdf ko'rish