• Adabiyotlar
  • Kosinus o‘xshashligining python dasturlash tiliga tatbig‘i




    Download 0,51 Mb.
    Pdf ko'rish
    bet11/12
    Sana22.01.2024
    Hajmi0,51 Mb.
    #143201
    1   ...   4   5   6   7   8   9   10   11   12
    Bog'liq
    n.xudayberganov sh.hasanov til va madaniyat

    Kosinus o‘xshashligining python dasturlash tiliga tatbig‘i
    l1 =[];l2 =[]
    # berilgan gaplar to‘plamlari
    X_set = {‘men’, ‘har’, ‘kuni’, ‘maktabga’, ‘boraman’}
    Y_set = {‘maktabga’, ‘bugun’, ‘men’, ‘barvaqt’, ‘bordim’}
    # ikkala satrning kalit so‘zlarini o‘z ichiga olgan 


    Tabiiy tilni qayta ishlashda so‘zlar orasidagi masofani aniqlash algoritmlaridan foydalanish
    81
    to‘plam hosil qilamiz
    rvector = X_set.union(Y_set)
    for w in rvector:
    if w in X_set: l1.append(1) # maxsus vektor 
    yaratamiz
    else: l1.append(0)
    if w in Y_set: l2.append(1)
    else: l2.append(0)
    c = 0
    # kosinus formulasi
    for i in range(len(rvector)):
    c+= l1[i]*l2[i]
    cosine = c / float((sum(l1)*sum(l2))**0.5)
    print(“kosinus o‘xshashligi: “, cosine)
     
    Natijada:  kosinus o‘xshashligi 0.4 
    Xulosa
    So‘zlar orasidagi masofa qiymatini tavsiflovchi bir qancha 
    qiymatlar mavjud. Ulardan Hamming, Levenshteyin masofalari 
    va Kosinus o‘xshashligini yuqorida ko‘rib chiqqan holda shuni 
    xulosa qilish mumkinki, har bir nazariyada kelib chiqadigan natija 
    hamda ularning samaradorligi orqali o‘zining ishlatilish o‘rnini 
    aniqlash mumkin. Aynan bir xil belgilar bilan boshlanuvchi so‘zlarni 
    tekshirgan vaziyatda, Hamming masofasi boshqalarga nisbatan 
    tabiiy tilni qayta ishlash jarayonida soddaroq hamda samaraliroq 
    bo‘ladi. Biroq, satrlar hajmi ortishi hamda farq qiluvchi nuqtalar 
    o‘zgarishi bilan Levenshteyin masofasi samaradorlik darajasi 
    yuqoriga ko‘tariladi. Bundan tashqari, yuqorida berilgan nazariyalar 
    orasida, katta hajmdagi matn yoki hujjatlar bilan ishlagan vaziyatda 
    Kosinus o‘xshashligi eng munosib tanlov bo‘ladi. Demak, Hamming 
    masofasini boshlang‘ich asos deb qaraladigan bo‘lsa, Levenshteyin 
    masofasini uning so‘zlarga nisbatan mukammalroq vaziyati, shu 
    bilan birgalikda, Kosinus o‘xshashligi esa so‘zlar jamlanmasi bo‘lgan 
    matnlar yoki hujjatlar bilan ishlash uchun eng munosib nazariya 
    sifatida qaraladi. 
    Adabiyotlar:
    Waggener Bill. Pulse Code Modulation Techniques. Springer. p. 206. ISBN. 
    Retrieved 13 June, 2020.
    Robinson, Derek J. S. (2003). An Introduction to Abstract Algebra. Walter 
    de Gruyter. pp. 255–257.ISBN.


    82
    Nizomaddin XUDAYBERGANOV, Shaxboz HASANOV 
    Levenshteyin, Vladimir I. (February 1966). “Binary codes capable of 
    correcting deletions, insertions, and reversals”. Soviet Physics 
    Doklady.
    Levenshteyin Distance Computation by Sergey Grashchenko November 16, 2022. 
    https://www.baeldung.com/cs/Levenshteyin-distance-
    computation
    Cosine similarity https://en.wikipedia.org/wiki/Cosine_similarity
    Connor, Richard (2016). A Tale of Four Metrics. Similarity Search and 
    Applications. Tokyo: Springer.
    Cosine distance, cosine similarity, angular cosine distance, angular cosine similarity. 
    https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/
    cosdist.htm.
    Understanding cosine similarity and its application. Richmond Alake 
    Sep 15,2020. Connor, Richard (2016). A Tale of Four Metrics. 
    Similarity Search and Applications. Tokyo: Springer.
    Sidorov, Grigori; Velasquez, Francisco; Stamatatos, Efstathios; Gelbukh, 
    Alexander; Chanona-Hernández, Liliana (2013). Advances 
    in Computational Intelligence. Lecture Notes in Computer 
    Science. Vol.7630. LNAI 7630. pp.1–11.

    Download 0,51 Mb.
    1   ...   4   5   6   7   8   9   10   11   12




    Download 0,51 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Kosinus o‘xshashligining python dasturlash tiliga tatbig‘i

    Download 0,51 Mb.
    Pdf ko'rish