• ADAS solution Sensor types involved + Infrastructure Processing power/effor needed – to ensure real-time
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet15/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   11   12   13   14   15   16   17   18   ...   81
    Bog'liq
    Alireza Fasih

    2.
     
    Requirements of ADAS concerning real-time computing 
    for the image processing based Sensors
     
    2.1
     
    Context and Motivation 
    In this chapter the focus lies on the following research question:
     

    What are the hard 
    requirements of ADAS concerning real-time image processing and design flexibility? How far 
    do traditional approaches fail to satisfy these 
    requirements?”
     
    High-end vehicles are equipped with different technologies for driver assistance in order 
    to ensure more safety [7, 9]. In ADAS there are different sensors with different sampling 
    frequencies. One layer above the raw data layer there is an additional layer in which data 
    fusion, pattern recognition and classification are performed [9]. These last mentioned tasks 
    are computationally heavy; therefore this second layer is the most critical part of ADAS 
    technology in terms of processing time and speed. The third layer is the application layer.
    In Table 1 selected examples of ADAS solutions are presented whereby the respective 
    computational effort is roughly classified. 
    Table-1: Different types of ADAS solutions and processing power/effort needed
    (Low: <10 GFLOPS; Medium: 10~50 GFLOPS; High: 50~150 GFLOPS; Very High: >150 GFLOPS) 
    ADAS solution 
    Sensor types involved + 
    Infrastructure 
    Processing power/effor 
    needed 

    to ensure real-time 
    processing 
    Night vision 
    Thermal or IR camera 
    Medium 
    Lane departure warning 
    HD camera 
    Medium 
    Near field collision warning 
    Radar-24 GHZ 
    High 
    Curve and speed limit info 
    Gyroscope and accelerometer 
    Low 
    Lane keeping assistance 
    HD camera 
    Medium~high 
    Adaptice cruise control 
    Lidar
    High 
    Automatic parking 
    HD camera + ultrasonic sensors 
    Medium 
    Pre-crash collision system 
    Lidar 
    High 
    Obstacle warning 
    Stereo camera 
    Very high 
    Fatigue detection 
    HD camera + IR camera 
    Very high 
    Autonomous driving 
    Multiple sensors and multi sensor 
    fusion 
    Very high 
    Traffic Sign Recognition 
    HD Camera 
    High~very high 


     
    19 
    In many ADAS cases the driver will be warned if a potentially dangerous situation is 
    detected. But in some other cases, depending on the type of assistance, the ADAS system 
    can take over the control (partially or fully) over the car by sending appropriate 
    commands to the actuators. In such cases of control takeover the signal/video processing 
    must be ultrafast to ensure very hard real-time requirements.
    Two main issues while designing an ADAS system are the processing speed and the 
    robustness. A robust system should work in dynamic environmental condition, dynamic 
    illumination and lighting [7]. Some distortion like sun in background and shadows can 
    disturb the vision system and provide wrong information. To ensure that system is 
    working in different condition we need a highly adaptable framework with dynamic 
    coefficient. 
    Depending on the type of video-based ADAS applications we do need different appropriate 
    software/hardware architectures as well as different combinations of image processing 
    filters. Some filters are very complex in term of processing computational effort. A good 
    example of a complex filters is the stereo vision for depth estimation and collision 
    avoidance. For such complex processing tasks one does need a specific hardware and 
    software architectures that amongst others enable and support parallel processing and 
    tasks concurrency. .
    Traditionally one has been using sequential processing architectures, time sharing and 
    multi-threading algorithms [9, 37, 38]. The main weakness of this traditional way of 
    processing with respect to performance and speed is that processing time is too slow for a 
    real-time ADAS application [9]. Therefore, the traditional approach has only limited ways 
    to reach a certain speeding-up: to extend the hardware, and use more powerful processors.
    To ensure a real-time processing of high quality images the system should able to 
    complete the processing of a frame within less than therequired time for capturing a frame. 
    Consequently, for a 60 FPS we do have a maximum 15 milliseconds for all processing. And 
    if we have 6~10 different sequential high definition (HD) image preprocessing 
    modules/function whereby each one takes around 5ms on traditional (embedded) 
    processing platforms/architecture, it would take, overall, approximately 30 ms to50 ms. By 
    those processing times one does clearly fail to satisfy the real-time requirement/deadline 
    of 15 milliseconds.


     
    20 

    Download 3,22 Mb.
    1   ...   11   12   13   14   15   16   17   18   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish