Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet18/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   14   15   16   17   18   19   20   21   ...   81
Bog'liq
Alireza Fasih

3.
 
Major limitations of traditional high performance 
computing concepts 
In this chapter the focus lies on the following research question
: “What are the major
limitations of traditional high performance computing approaches destined to real-time 
image processing?”
 
 
3.1
 
Motivation and general context 
The main goal for the use of ADAS solutions in cars is for increasing road safety [46]. ADAS 
do enable a better response to dangerous situations that may occur on the road in a very 
robust and fast manner [7, 46]. Traditional architectures for ADAS have been based on 
sequential processing on mainly 
von Neumann
types of architecture. They are 
consequently not fast and flexible enough for processing huge amount of visual data [49, 
50] within hard real-time constraints.
In fact, processing images on a 
Central Processing Unit
(CPU) has many limitations. A 
computing problem (in this case, an image processing one) can generally be broken down 
into a discrete series of instructions where pixels will be manipulated individually. There 
are two major limitations of classical sequential algorithms performing sequentially on 
CPU hardware [26, 49].
First of all, in contrast to parallel processing systems, sequential techniques/algorithms 
are very slow for high definition quality images. Therefore, while using these techniques a 
real-time image processing can only be reached through a costly system having a relatively 
very high performance computing. Thereby the main drawback will be the size of system 
as well as the power consumption; both will result in increasing the total cost of the 
solution. One further limitation is the strong inflexibility with regard to design and 
modification potential of the system for different types of algorithms/processings. Thus 


 
24 
one can formulate two different classes of limitations that are: a) the one related to the 
software architecture and to the algorithms for manipulating pixels and afterwards 
extracting meaningful data; and b) hardware limitations and inflexibility of design. A much 
better solution for image processing is the use of a parallel processing architecture. 
Multiple Instructions - Multiple Data
streams (MIMD) is the most common architecture for 
parallel processing; most modern computers fall into this category [51, 52]. In this model 
of processing every processing unit may access to different memory and data streams. For 
increasing the performance for reaching a sufficient speedup, dedicated hardware for each 
algorithm has been suggested. Hence, designers implement each application on different 
platform, and this redundancy in hardware increases the price and complexity of the 
system [53, 54]. 
A direct mapping of algorithms on the hardware is often viewed as the best way of 
processing [53, 55, 56]. The only issue that should be considered in this case is the low 
flexibility of the system concerning design time. Therefore, the only drawbacks of this 
approach are: a) the complexity of mapping many image processing operators/functions 
onto the hardware, and b) the limitation of hardware resources.
Hence, we are looking for a reconfigurable model/concept/architecture that can change 
(or be reconfigured) into different functions and thereby significantly saving hardware 
resources. Another important factor of this model is parallel processing of pixels. 

Download 3,22 Mb.
1   ...   14   15   16   17   18   19   20   21   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish