• (a) The Intuitive method
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet26/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   22   23   24   25   26   27   28   29   ...   81
    Bog'liq
    Alireza Fasih

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     


     
    39 
    Chapter 5 
    5.
     
    CNN template calculation schemes with a particular focus 
    on the learning/training based approach through Genetic 
    Algorithms 
    In this chapter the focus lies on the following research question:
     

    What are the major 
    template calculation schemes of relevance for CNN based image processing? How can these 
    calculations be performed in a real-
    time high performance computing context?”
     
     
    5.1
     
    Introduction 
    Cellular Neural Networks technology provides a very powerful analog computing 
    architecture for a variety of array computation and image processing tasks [94]. From a 
    theoretical point of view CNN model offers a huge potential for modeling image processing 
    filters and operators on a CNN Universal Machine. Each CNN processor matrix used in 
    image processing has a feedback template, a feed-forward template and a bias template. 
    These three templates can reconfigure the CNN model without any changes in hardware. 
    The most challenging issue is to find an optimum set of proper template values for each 
    specific application[98]. Figure 5-1, shows this CNN architecture. Overall, there are three 
    major ways to calculate the feed-forward and feedback templates:
    (a) The Intuitive method:
    This first method is needs intuitive thinking of the designer [99]. Depending on the 
    designer’s experience in either processing images or dynamics of arrays, we can have a
    template. There is no guarantee to find a template for all image processing operators and 
    could be very difficult to find a template for complex solution. Experts are familiar with 
    template of basic image processing operators and they can combine different templates or 
    performing them on CNN individually one by one. For example, we know the template of 
    Laplacian of Gaussian for finding edges and also template for smoothing image. If we 


     
    40 
    combine these two templates on a control template and feedback template respectively, 
    results will be an enhanced image with sharpen edges. 

    Download 3,22 Mb.
    1   ...   22   23   24   25   26   27   28   29   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish