• (iii) Direct template derivation method
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet27/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   23   24   25   26   27   28   29   30   ...   81
    Bog'liq
    Alireza Fasih

    Figure 
    5-1: CNN Architecture 
    (b) The heuristic based learning method:
    Another method for template designing is the learning/training method [99]. This method 
    is very popular in image processing. During the learning phase, there is a pair of input and 
    target images that is supposed to be generated with a better and better becoming template. 
    After every iteration step a fitness function evaluates the error between the input image 
    and the target image. In some cases output of CNN is very sensitive to changing template. 
    Hence, 
    it’s
    very difficult for GA to find a proper template and the learning algorithm never 
    stosp because the error-level remains high and an appropriate template therefore does not 
    exist. Another problem is that it could take too much time and the error will never 
    converges to the minimum level [99],[94]. This does happen when the learning 
    method/process is trapped in some form of local minimum.
    Conv2D (T
    A
    ,Y) 


     
    Bias 
    Sigmoid Function 
    Conv2D (T
    B
    ,U) 

    Input Image 
    Control Template 
    Feedback Template 


     
    41 
     (iii) Direct template derivation method: 
    The third method is the direct template design for those desired functions that are exactly 
    explicit. This method is accurate but it is not always trivially possible to map any desired 
    function onto the CNN system model. Depending on the function, enhancing the CNN is 
    possible, such as adding a new layer or a specific nonlinear term [98]. We know that there 
    are many application based on different PDE model, such as inpainting for recovering 
    corrupted regions in image [70], image segmentation [71], noise reduction edge 
    preservation [72]. The procedure of solving PDEs in CNN is by transforming a PDE to set of 
    ODEs as a coupled system. After transforming a continuous spatial PDE to an array of 
    discrete interactive systems which are ODEs, we can map it on CNN cells. Because CNN is 
    natural and flexible paradigm for modeling a simple locally interconnected dynamical 
    system which are grid base. Detail of this template modeling is already described in sub-
    chapter 3-3. 
    Our goal in this chapter is to give a practical introduction to template design. We however 
    focus on the heuristic method based on genetic algorithms. 

    Download 3,22 Mb.
    1   ...   23   24   25   26   27   28   29   30   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish