Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet35/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   31   32   33   34   35   36   37   38   ...   81
Bog'liq
Alireza Fasih

 
 
Figure 
5-9: Removing noise from the image 


 
54 
An image having a tube is fed to the CNN, as shown in Figure 5-10(a). The aim is to fill the 
tube with a given dotted pixel. Figure 5-10(c) shows the output as specified by target. 
 
(5-8) 
 
 
 
Figure 
5-10: Filling a long tube with a dotted pixel 
In Figure 5-11, a changing gradient image was provided as input. The aim is thresholding 
up to a specified limit as shown in the target image. Figure 5-11(c) shows the output image 
for the following set of parameters. 
(5-9) 
 


 
55 
 
Figure 
5-11: Thresholding to a specified limit 
Obstacle detection was performed by a sequence of stereo images using Cellular Neural 
Networks. The CNN parameters were determined by a genetic algorithm based on real 
number chromosomes. Using real number chromosomes, repeated encoding and decoding 
of the chromosomes is not required. Unlike binary chromosomes, relatively smaller 
chromosomes are produced. This approach was successfully implemented for obstacle 
detection and also it was found to produce good results for many other image processing 
tasks. In future, we aim to implement this approach on hardware level for enhancing 
efficiency and speed. 
5.4
 
Real-time computing issues for the genetic algorithm based 
CNN template’s calculations
Adaptive image processing and image analysis is very important for ADAS concepts. 
Processing image under different and environmental visual conditions such as fog, rain, 
and sun in background is not trivial. To overcome problems in this form we need to involve 
adaptive image processing techniques. Our CNN platform can process images with a 
performance of 100 FPS. For dynamic processing, CNN needs dynamic templates or set of 
templates. To have a fast response, CNN needs to access different templates very fast. 
There are three ways for real-time template accessing. Template pre-calculation is one 
solution. There are many standard and classic templates like thresholding, contrast 
enhancement, dilation, opening, erosion, closing, find edging, median filter, etc that can be 
pre-calculated and stored in a list. And depending on the situation the procedure system 


 
56 
can call different templates. Figure 5-12 shows this structure for pre-calculation of 
templates. 

Download 3,22 Mb.
1   ...   31   32   33   34   35   36   37   38   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish