• 5.2.6 Reproduction in the genetic algorithms
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet31/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   27   28   29   30   31   32   33   34   ...   81
    Bog'liq
    Alireza Fasih

    5.2.5
     
    Selection theory in the genetic algorithms 
    As the process of evolution creates new generations and since every new generation 
    contains better chromosomes than the previous one, the process of selecting better 
    chromosomes for a next generation is very important. The selection process does not 
    consider the chromosomes merely on the basis of fitness. This process is rather random, 
    through which the parents for the new generations are selected randomly based on their 
    fitness. The method of selection used in our genetic algorithm approach is based on 
    selecting parents from half of the population. After evaluating the fitness of all the 
    chromosomes, the population is sorted in descending order. The best chromosomes 
    occupy higher locations in the list. Every time the two chromosomes are selected randomly 
    for crossover and mutation from half of the population. In order to increase the probability 
    of selecting good parents, the parents can be selected from a specified fraction of the half of 
    the population. For example, the first parent can be selected from half of the population 
    and the second can be selected from 30% of the half of the population from the pool of 
    much better parents.
    5.2.6
     
    Reproduction in the genetic algorithms 
    The reproduction phase involves generating a new population for the next generation from 
    the selected parents by applying two genetic operators, crossover and mutation on the 
    selected parents. These two processes result in the next generation population of 
    chromosomes that is different from the previous generation. In our approach, after 
    parents’ selection, crossover, mutation and fitness evaluation, the two children can go to
    the next generation only when the fitness of each one of them is greater than the worst 
    child. The first child is compared with the worst parent and if its fitness is greater than the 
    worst parent, it is replaced by the worst parent and the population is sorted in descending 
    order. The same is done with the second child. 


     
    47 

    Download 3,22 Mb.
    1   ...   27   28   29   30   31   32   33   34   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish