Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet33/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   29   30   31   32   33   34   35   36   ...   81
Bog'liq
Alireza Fasih

 
5.2.9
 
Obstacle detection through the developed concept 
Collision prevention for autonomously navigating moving vehicles driving without driver 
assistance needs a robust prediction of potential objects. The basic aim of obstacle 
detection is to extract feature points in images. Two images of a synthetical image 
sequence are presented in Figure 5-3 showing a ride over a textured plane on which three 
dimensional objects are located; the image has been recorded by a moving camera. As in 
real traffic scenes, the motion direction and the viewing direction are identical. The goal is 
to find the templates of a CNN processor that is able to extract the three dimensional 
objects by presenting two images of such a sequence [100]. The task can be performed by 
removing all the details inside the image except the 3D objects that represent the obstacles.
The approach used in [100] performs the edge extraction of the two images and then 
thresholding as shown in Figure 5-4. For this, the two thresholded images are presented as 
input to CNN for training along with another target image. For the sake of comparison, we 
have used the same images. We found that using suitable CNN parameters, a direct 
thresholding of the image can also remove the background and highlight only the 
foreground objects. A direct thresholding for textured plane removal is shown in Figure 5-


 
49 
5. The next step is to remove the objects present on the plane and to extract only the 3D 
objects in the image that represents the obstacles. This is done by presenting two 
thresholded images of this sequence to CNN along with a reference or target image.
Figure 5-6 shows the initial condition, the input and the target images applied to the CNN 
processor. A target image is constructed by removing all the plane objects and by leaving 
only those above the plane. The targeting is achieved just after 170 iterations and thereby 
producing the following CNN parameters:
(5-5) 
Figure 5-
7 shows the output of the concept’s simulator. It can be seen that all the plane
textures are removed and only the objects above the plane remain. The final output image 
does not contain the lower edges of the objects since there is no way to discriminate the 
lower edges of the objects and the edge pixel of texture on the plane.

Download 3,22 Mb.
1   ...   29   30   31   32   33   34   35   36   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish