• 5.2.8 Fitness function in the genetic algorithm
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet32/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   28   29   30   31   32   33   34   35   ...   81
    Bog'liq
    Alireza Fasih

    5.2.7
     
    Crossover and mutation in the genetic algorithms 
    After selecting parents from the population by any suitable mechanism, the genetic 
    algorithm operator crossover is applied on the selected parents. Crossover breeds the 
    selected parents to produce new children for the next generation. For the reproduction 
    phase and to produce the next generation, breeding the parents to produce new children is 
    necessary, otherwise the evolution process cannot proceed to better solutions. Crossover 
    can (but not every time) produce children that have better fitness than the parents. We use 
    a 2-
    point crossover in which two crossing sites are selected in the parent’s chromosomes
    randomly and the genes between the crossing sites are interchanged between the two 
    parents. Mutation is a genetic operator that maintains genetic diversity from one 
    generation of a population to the next. The purpose of mutation is to prevent trapping into 
    local minima. In our approach of genetic algorithm that uses real number chromosomes, 
    any arbitrary number (gene) in a randomly selected parent is changed by a randomly 
    selected number that falls in the interval to which all the chromosomes genes belong.
    5.2.8
     
    Fitness function in the genetic algorithm
    Fitness function plays an important role in determining the exact solution. It determines 
    the fitness for every chromosome in every generation by comparing it with the original 
    solution. The exact solution can be reached when an exact (or near to exact) match is found 
    between a chromosome and the original solution. The search may also finish when a 
    specified number of populations/iterations has been completed. The fitness function used 
    to compare every output image with the target image in our genetic algorithm approach is 
    based on Euclidean distance between the two images. It first calculates a cost which is a 
    measure of to which extent two images differ from each other.
    This cost value is then mapped to a fitness value which represents the fitness of the output 
    image. Throughout the evolution process, the genetic process aims to minimize the cost 
    function and increase the fitness value.


     
    48 
    (5-3) 
    𝐶𝑜𝑠𝑡 (𝑖, 𝑗) =


    (𝐼(𝑖, 𝑗) − 𝑇(𝑖, 𝑗))
    4𝑀𝑁
    (5-4) 
    𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = 1 − 𝐶𝑜𝑠𝑡
    In Equation 5-3, I represents an M×N input image into the CNN processor and 
    T
    does 
    represent a M × N target or reference image. The Euclidean distance is useful to find the 
    pixelwise difference between the input and the target image. The denominator 4×M×N is 
    used for normalizing the cost between 0 and 1. The input image is normalized in the range 
    [-1, +1] before being fed into the CNN.

    Download 3,22 Mb.
    1   ...   28   29   30   31   32   33   34   35   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish