Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet29/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   25   26   27   28   29   30   31   32   ...   81
Bog'liq
Alireza Fasih

5.2.2
 
Principles of Cellular Neural Network
The Cellular Neural Network (CNN) concept was introduced by Leon O. Chua and Ling 
Yang in 1988. It is a massive parallel processing paradigm which combines some of the 
features of Cellular Automata (Discrete states, concept of neighborhood) [103] and 
Artificial Neural Networks (simple processing elements, continuous states and parallel 
computation) [92]. CNN is an n-dimensional array of mainly identical systems, called cells 
[83]. What distinguishes CNN from traditional Artificial Neural Networks is the locality of 
connections. Unlike artificial neural networks, every cell in cellular neural network 
communicates directly to its nearest neighbors only. The locality of couplings contributes 


 
44 
to the amazingly enhanced processing speed in cellular neural networks. Each cell is made 
up of a linear capacitor, a non-linear Voltage-controlled current source and a few resistive 
linear circuit elements, as shown in Figure 5-2 [104].
 
Figure 
5-2: Basic architecture of CNN cell: the equivalent electrical circuit 
 
In Figure 5-2, 
C
is a linear capacitor; 
R
and 
R
are linear resistors; 
I
is an independent 
voltage source;
I
and 
I
are linear voltage controlled current sources with the 
characteristics 
I (i, j; k, l) = A(i, j; k, l)u
and 
I (i, j; k, l) = B(i, j; k, l)u
for all 
C(i, j)ЄN(i, j);
I
is a piecewise-linear voltage-controlled current source. Applying 
Kirchhoff’s Current Law
(KCL) and 
Kirchhoff’s Voltage Law
(KVL), the following state 
equation of CNN can be derived. 
(5-1) 
𝑥̇
,
= −𝑥
,
+
𝐴(𝑖, 𝑗; 𝑘, 𝑙)𝑦
,
+
( , )∈ ( , )
𝐵(𝑖, 𝑗; 𝑘, 𝑙)𝑢
,
+
( , )∈ ( , )
𝐼
Where
x
is the state of the cell C (i,j); A(i,j;k,l) and B(i,j;k,l) are the feedback and control 
templates respectively for all cells C(k,l) in the neighborhood N(i,j) of cell C(i,j).
The output equation is given as: 


 
45 
(5-2) 
y =
1
2
( 𝑥 + 1 − 𝑥 − 1 )
The feedback template (A), the control template (B) and the Bias (I) are all core parts of a 
CNN processor concept and contribute to the determination its output for a given input.

Download 3,22 Mb.
1   ...   25   26   27   28   29   30   31   32   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish