Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet28/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   24   25   26   27   28   29   30   31   ...   81
Bog'liq
Alireza Fasih

5.2
 
Genetic algorithm based template optimization for a vision 
system 
A concept is developed for training and optimizing the templates of a cellular neural 
network involved in obstacle detection. The concept uses a genetic algorithm (GA) for 
training the cellular neural network. The traditional genetic algorithm method involves the 
creation of an initial population of random solutions (chromosomes) in binary format, the 
so called chromosomes encoding. But our genetic algorithm approach defines the 
chromosomes in the form of real numbers, thus eliminating the need of encoding and 
decoding of the chromosomes. The results do not differ, by no means, with those of the 
traditional methods. This method is used here for obstacle detection for autonomous 


 
42 
vehicles giving two stereo images of a sequence as inputs. The output results for various 
different image processing tasks are also presented. 
 
5.2.1
 
General background 
The problem of obstacle detection for the vehicles driving with or without driver 
assistance is one of the major challenges in the field of robotics and machine vision. A 
robust mechanism inspired by the most complicated and accurate vision system, i.e., that 
of human beings, needs to be sorted out properly. The problem of identifying the changing 
environment of the roads, detecting the potential obstacles and avoiding them are 
tremendous tasks in the field of machine vision. The basic aim of obstacle detection is to 
extract/identify feature points/parts in images and removing all the other image contents. 
The most important factor which is always needed to be fine-tuned is the speed. This 
process needs to be accurate and should be carried out with a very fast speed. The 
common approaches in this context use analytical and statistical methods like motion 
estimation or the generation of maps. One of these methods involves features extraction, 
subsequent displacement vector estimation and a robust estimation of the motion 
parameters. Since this procedure is composed of several processing steps, the error 
propagation of the successive steps often leads to inaccurate results [100]. Through using 
CNN a direct obstacle detection can be performed which eliminates the above mentioned 
problems. The parallel computation paradigm of CNN provides a fast processing 
mechanism. Presenting two stereo images of a sequence to CNN, to highlight the 3D 
objects as potential obstacles in the image, provides a fast and robust mechanism for 
obstacle detection.
For obstacle detection using CNN, there is a need of training CNN for highlighting the 3D 
objects in the image. The training process includes parameter optimization for CNN. This 
approach has also been used in [100] which uses the so-called iterative annealing [101] 
method for parameters optimization. For carrying out this task, a CNN with 5-by-5 
neighborhood and a polynomial cell coupling of degree 3 is used in this work. One of the 
drawbacks in iterative annealing is the possibility of trapping into local minima and ending 
with an incorrect solution. The approach presented above is adapted in this work by 


 
43 
carrying out the same task by using a 3-by-3 CNN processor matrix. For 
template/parameter optimization, we do use a genetic algorithm. A genetic algorithm is a 
learning algorithm based on the mechanism of natural selection and genetics, which has 
proven to be effective in a number of applications [102]. Suitable selections of its operators 
enable the algorithm not to fall into local minima. The common approach of genetic 
algorithm involves creating an initial population of binary numbers that represent the 
possible solutions. The search evolves with these initial population members (called 
chromosomes) and manipulates them in order to achieve an accurate or optimal solution. 
The population of binary numbers needs repeated encoding and decoding process. Also the 
sizes of chromosomes are very large and vary proportionally to the problem variables. We 
do use a ‘real coded’ approach of genetic algorithm that exploits an initial population of
real numbers rather than binary numbers. This eliminates the need of repeated encoding 
and decoding of chromosomes and improves both efficiency and speed of the algorithm. 
The approach was not only used for finding obstacles in the images but also for other 
image processing tasks: e.g. thresholding, noise removal, filling etc. Even in the lastly 
mentioned cases the concept was found to produce good results.
The next section discusses a brief introduction of CNN and genetic algorithm as a good 
candidate for CNN parameter optimization. The obstacle detection using CNN based on the 
real coded approach of a genetic algorithm is considered as well. Various output results for 
different image processing tasks are also presented.

Download 3,22 Mb.
1   ...   24   25   26   27   28   29   30   31   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish