Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet36/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   32   33   34   35   36   37   38   39   ...   81
Bog'liq
Alireza Fasih

 
 
 
Figure 
5-12: Processing scenario by pre-calculated CNN templates 
Another way is using that type 
of template which is calculated by PDE’s. If we map PDEs to
templates in a parametric way then we are able to change the parameters in real-time for 
adaptivity. In [106], A Gacsádi 
et al
proposed a PDE based template for contrast 
enhancement. They consider the energy function 
E
as indicated in Equation 5-10, and try 
to minimize this function. 
(5-10) 
𝐸(𝜙, 𝐺) =
‖∇𝜙‖ 𝑑𝑥𝑑𝑦 + 𝜆|𝐺|
The first term of this equation is a smoothness constraint and the second part is an edge 
penalty. During the minimization, there is a tradeoff between image smoothness and image 
deblurring. The following Equation 5-11, is an approximation of the contrast enhancement 
equation in a single layer CNN.
(5-11) 
𝐴 =
0
0.25
0
0.25
0
0.25
0
0.25
0
, 𝐵 =
0
−𝜆
0
−𝜆
4 ∗ 𝜆
−𝜆
0
−𝜆
0
, I=0 
CNN 
CPU 
Templates Bank 


 
57 
In this template 
𝜆
is a scalar coefficient as a ratio between contrast enhancement and 
smoothness level. Mapping any PDEs with parametric coefficient is possible; therefore 
depending on the situation, a main controller can change these coefficients to adapt the 
CNN result. By this way we can pre-calculate templates for a wide range of problems and 
use them dynamically in a real-time situation.
There is a hardware based solution also for template calculation. Theoretically genetic 
algorithm is a time consuming optimization technique in any domain of science. There are 
two issues that make GA slow. The first issue is the nature of the selection process. This 
means that for optimizing a solution we have to perform the objective function to a huge 
amount of chromosomes until it converges to the global minimum. Another problem comes 
from the performance of the system. In our case (i.e. Finding template for CNN) for 
evaluating a quality of chromosomes as a solution, the system needs to decode the 
chromosomes and apply it on the CNN and check the results according to the objective 
function. In [107] D. Balya 
et al
did analyse several papers to study techniques of template 
calculation based on genetic algorithms and proposed an analogic implementation of the 
genetic algorithm based template calculation on FPGA. In genetic algorithms the fitness 
function is a soft computing module and the rest of the system could be implement on any 
hybrid or homogenous machine. Figure 5-13 shows the schematic of ideal system for 
calculating the CNN templates. 
Figure 
5-13: Integration of CNN on FPGA with PowerPC for speeding up of genetic 
algorithm 
UM-CNN 
On FPGA 
PowerPC 
Fitness Function 
DDR 
Memory for storing 
Chromosomes 
GUI and consol for 
monitoring results 


 
58 
Chapter 6 

Download 3,22 Mb.
1   ...   32   33   34   35   36   37   38   39   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish