Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet38/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   34   35   36   37   38   39   40   41   ...   81
Bog'liq
Alireza Fasih

6.2
 
New computational modeling for solving higher order ODE’s
based on FPGA 
In this research we propose a method for solving complex higher order ordinary 
differential equations (ODE) based on an emulation of the analog computing paradigm on 
digital hardware platforms. In this case, we mimic real analog system elements by digital 
discretized models. Due to the flexibility and reconfigurability of FPGA and also the 
possibility of system behavioral modeling through hardware description languages (HDL), 
we are able to create all fundamental elements that are necessary to both simulating 
complex systems and the modeling of any ordinary differential equations (ODE) or a 
system simulation based on ODEs. We therefore propose a novel methodology of solving 
systems and higher order ODEs. This technique is similar to the analog computing but with 
the key difference that we possess more flexibility and are able to control at will the 
precision level wanted/needed. Further features are values scaling of both the results and 
internal variables. 
6.3
 
General background 
Solving ordinary differential equations is essential in most scientific fields [110]. Around 
the 1950s, analog computing was the only solution/technology for solving the differential 
equations and simulating complex dynamic systems by using analog electronic 
components. In the last decades this method has been pushed away by the digital 
computing revolution. Almost all researchers have switched to numerical and algorithmic 


 
60 
methods for solving ODEs. But the digital computing has also its limitations. Thus, recently 
some researchers are exploring ways to return to the use of the analog computing method 
again [111], especially in cases where ultrafast speed of the solving process is needed (see 
realtime simulation needs for example). There are many reasons behind this decision. The 
first and most important issue is the processing speed. Much of the physical phenomena in 
the real world are measured/expressed by calculus; therefore with analog computing we 
can simulate these models very fast. Due to the inherent process and computing 
parallelization, analog computers are capable of producing complex solutions in real time. 
In the early days of the analog computing age (more than 40 years ago) they were facing a 
series of limitations due amongst others to the use of discrete electronic components of 
this analog computing paradigm: imperfect connections between elements, limitation in 
the voltage scaling, variability of elements characteristics during the process due to the 
temperature, etc [32], [108]. Also the precision of the component characteristics values is a 
serious technological non-scalable limitation. In a real analog computer, there is a 
limitation of the voltage scaling. The voltage is limited between the noise level and the high 
voltage level. Because of this physical limitation one cannot reach solutions that are out of 
this boundary (interval). Since the 1980’s up to now, many researchers have been trying to
implement analog computation systems for specific problems in VLSI chips [112, 113]. In 
VLSI chips, one can rescale the voltages within CMOS or TTL ranges. One particular 
weakness of this approach (i.e., analog VLSI implementation) is that the circuit is not re-
configurable and for solving a new problem we have to design another chip, what is a very 
expensive issue. Another problem is that we are not able to re-scale the time in this case. In 
some cases, for coupling system components, time synchronization becomes necessary. 
Due to the limitations of the VLSI approach, we have started thinking of an alternative that 
consists in the essence of an emulation concept of the analog computer on top of 
reconfigurable and scalable digital platforms, especially FPGA chips [111, 112, 114, 115]. 
This research shows that this emulation has been successful and that we are capable of 
modeling and solving any type of higher order even nonlinear ODE at an ultra-fast speed 
on this fully digital structure. 

Download 3,22 Mb.
1   ...   34   35   36   37   38   39   40   41   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish