• Figure 4-1: Model of a feed-forward neural network with four inputs and one output
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet21/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   17   18   19   20   21   22   23   24   ...   81
    Bog'liq
    Alireza Fasih

    4.
     
    Potential of Neurocomputing including Cellular Neural 
    Networks for ultrafast image processing 
     
    In this chapter the focus lies on the following research question


    What is the huge 
    potential of neurocomputing involving either traditional NN or CNN for high-speed and 
    flexible image processing for ADAS? Are there some limitations; how can these be 
    addressed?

     
    4.1
     
    Context and Motivation 
    Artificial Neural Networks (ANNs) are inspired by biological science; they mimic model 
    and behavior of biological neurons and perceptrons. In a sense, ANNs are a kind of 
    computing concept that are trained based on specific history and information in order to 
    mimic the same as behavior as that of the brain neurons. They implicitly ensure some form 
    of remembering of those historical information from the past [74].
    Figure 
    4-1: Model of a feed-forward neural network with four inputs and one output 


     
    31 
    Figure 4-1 shows a simple feed-forward neural network with four inputs and four cells as a 
    hidden layer and one output. Information can flows from input layer to hidden layer and 
    then to output layer through the connection which are generally called links or synapses. 
    Each layer except the input layer has an activation function. Flow of information from 
    input to output called feedforward. After training, the operation mode is feedforward 
    mode. Means loading information in input layer and system calculate the proper output 
    according to weight and topology of the network [75]. The most common learning method 
    for teaching and tr
    aining the MLP networks is backpropagation. It’s a supervised learing
    method and it is derivation of delta rule method. For training we need to perform 
    propagation phase and then updating weight. In propagation phase, we need to perform 
    forward propagation of training pattern and get the result from output layer activation 
    functions. After that, performing backpropagation of these output data by considering 
    target in order to generate the delta of output and hidden neurons. For updating the 
    weights we need to multiply output delts of each layer and input activation to calculate the 
    gradient of the weight and then updating the direction of gradient by subtracting the ratio 
    of synapse from the weight. This ratio is corresponding to the speed and quality of 
    learning. 
    There are many applications in image processing and machine vision for which one can use 
    this type of neural networks for processing. Traffic signs recognition could be a good 
    example. Hereby, the main problem for traffic sign recognition is the design of an algorithm 
    that is scale-variant and rotation-variant for recognition and classification of different 
    traffic signs. This means system is not sensitive to the scale and angle of signs. During 
    driving camera can see the sign from different angle of view and different scale. Therefore 
    this is feature of ANN is important. 
    This type of neural network has potential to learn multi-scale and multi-variant traffic 
    signs [76]. This means we can train ANN for different size and different traffic sign. The use 
    of artificial neural networks with their remarkable potential to derive meaning data from 
    complicated/complex data and information is getting more popular in the field of image 
    processing [76]. Detecting complex pattern, classification, and prediction are only few 
    examples illustrating the huge potential of neural networks for image processing.


     
    32 
    The main advantages of using ANN in ADAS technology is flexibility, robustness, adaptivity 
    in learning, real time operation after the learning phase and fault tolerance [77] [78]. It is 
    known that many conventional algorithms for image processing and machine vision are 
    not at all sufficiently fast in view the complexity of the tasks. It is furthermore relatively 
    very difficult to define an appropriate mathematical model for solving those problems. 
    ANNs however, can process the information in a similar way to the human brain. This 
    means that a predefined model for solving the problems and extracting meaningful data is 
    not necessary [79]. Artificial neural networks do offer many advantages. For example it 
    requires less formal statistical training; another advantage is the ability of detecting highly 
    complex and nonlinear relationships among independent and dependent variables. Finally, 
    it has also the potential for multiple training algorithms [79]. Due to the massive 
    parallelism, neural network are much faster than conventional methods. 
    If the modeling of a system is not trivial and thus complex and if it is hard to formulate an 
    explicit algorithm as a solution/model one should use artificial neural networks[80]. There 
    is a main difference between von Neumann models for computing which are based on 
    memory/processors and artificial neural networks. In an artificial neural network we are 
    using a parallel architecture similar the biological brains. We do not know details of the 
    complex mechanisms within the human brain; but we do know the main principles of 
    neurons operations either individually or globally [81]. Another main factor of artificial 
    neural networks is scalability and adaptivity in the learning phase. The system can change 
    its structure based on training information. We can model very complex models and 
    relation between input and output. 
    Basically ANNs are appropriate for processing images [81]. However, they do have some 
    weak points such as over-fitting during the training phase, their black-box nature and the 
    complexity of a related hardware implementation [82].
    Designing and implementing a computing system based on artificial neural networks in 
    software for a high resolution image is very complex but can thereby even not be fast 
    enough with regard to the real-time requirements of ADAS [80]. Therefore, we are 
    interested in implementing it in hardware. There are two main problems faced by the 
    hardware implementation of artificial neural networks. A first problem is the huge 


     
    33 
    complexity of the network due to too many connections between cells. Another challenge 
    is how to design a reconfigurable architecture that can be reconfigured to execute 
    different tasks [80]. To find a general purpose hardware platform and architecture concept 
    capable of solving/computing different types of problems of image processing is not a 
    trivial.

    Download 3,22 Mb.
    1   ...   17   18   19   20   21   22   23   24   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish