TEOREMA. Agar (π, π ) = 1 bo`lsa, u holda ππ₯ β‘ π(ππππ)
taqqoslamaning yechimi π₯ β‘ ππ π(π)β1(ππππ) bo`ladi.
ISBOTI. (π, π) = 1 bo`lgani uchun Eyler teoremasiga ko`ra π π(π) β‘ 1 (ππππ ). Bundan
π π(π) β π = π(ππππ)
π β π π(π)β1 β π = π(ππππ) (3)
Demak, (1) β§ (3) ni solishtirsak, π₯ = π π(π)β1 β π(ππππ)
yechimi ekani ko`rinadi.
Misol. 5π₯ β‘ 3(πππ6)
(5,6 ) = 1 bo`lgani uchun π₯ = 3 β 5 π(6)β1(ππππ ) β‘ 3 β 5 (ππππ ) β‘ 15 β‘ 3 (ππππ ).
Sinash usuli. Bu usulning mohiyati shundaki (1) taqqoslamadagi π₯ o`rniga π modulga ko`ra chegirmalarning to`la sistemasidagi barcha chegirmalar ketma-ket qo`yib chiqiladi. Ulardan qaysi biri (1) ni to`g`ri taqqoslamaga aylantirsa, o`cha chegirma qatnashgan sinf yechim hisoblanadi. Lekin koeffitsient yetarlicha katta bo`lganda bu usul qulay emas.
Koeffitsientlarni o`zgartirish usuli. Taqqoslamalarning xossalaridan foydalanib, (1) da noβma`lum oldidagi koeffitsientni va b ni shunday o`zgartirish kerakki, natijada taqqoslamaning o`ng tomonida hosil bo`lgan son ππ₯ hadning koeffitsientiga bo`linsin.
MISOL. 1. 7π₯ β‘ 5(πππ9) 7π₯ β‘ 5 + 9(πππ9)
7π₯ β‘ 14(πππ9)
π₯ β‘ 2(πππ9)
2. 17π₯ β‘ 25(πππ28)
17π₯ + 28π₯ β‘ 25(πππ28)
45π₯ β‘ 25(πππ28)
9π₯ β‘ 5(πππ28)
9π₯ β‘ 5 β 140(πππ28)
9π₯ β‘ β135(πππ28)
π₯ β‘ β15(πππ28)
π₯ β‘ 13(πππ28)
Eyler teoremasidan foydalanish usuli. Ma`lumki, (π, π) = 1 bo`lsa, u holda ππ(π) β‘ 1 (ππππ) taqqoslama o`rinli edi. Shunga ko`ra, π₯ = ππ(π)β1 β
π(ππππ) bo`ladi.
Misol. 3π₯ β‘ 7(πππ11)
π₯ β‘ 3π(11)β1 β 7(πππ11) π(11) = 10
π₯ β‘ 39 β 7(πππ11) β‘ (33)3 β 7 β‘ 53 β 7 β‘ 4 β 7 β‘
28 β‘ 6(πππ11)
Taqqoslamaning moduli yetarlicha katta bo`lsa, quidagi usul ancha qulaydir.
Uzluksiz kasrlardan foydalanish usuli.
ππ₯ β‘ π(ππππ)
taqqoslama berilgan bo`lib, (π, π ) = 1 β§ π > 0 bo`lsin. π
π
kasrni uzluksiz
kasrlarga yoyib, uning munosib kasrlarini ππ
ππ
(π = Μ
1Μ
Μ
,Μ
πΜ
) kabi belgilaymiz, bunda
ππ = π β§ ππ = π bo`ladi, u holda
ππππβ1 β ππβ1ππ = (β1)π
tenglikni
πππβ1 β πππβ1 = (β1)π
ko`rinishda yozish mumkin, yoki
ππ πβ1 β‘ (β1 )π + ππ πβ1 dan
ππ πβ1 β‘ (β1 )πβ1(ππππ ) (2)
(2) ni (β1) πβ1 β π ga ko`paytirib,
(β1) πβ1 β π β ππ πβ1 β‘ π(ππππ) (3)
va (3) ni solishtirib
π₯ β‘ (β1 )πβ1π β π πβ1(ππππ)
ni hosil qilamiz. Bu erda ππβ1
son π
π
kasrning (π β 1) β munosib kasrning
suratidan iborat.
taqqoslama yagona yechimga ega bo`lgani uchun (3) yechim (1) ning yagona yechimi bo`ladi.
MISOL. 68π₯ β‘ 164(πππ212)
(68,164 ) = 4, 212/4
17π₯ β‘ 41 (πππ53 ), (17,53 ) = 1
π πβ1 = 25 π = 3, π β 1 = 2
π₯ 0 β‘ (β1 )2 β 25 β 41 (πππ53 ) β‘ 18 (πππ53 )
π₯ β‘ 18, 71, 124, 177(πππ212)
Ljandr simvoli va uning xossalari.
Ushbu π₯2 β‘ π (πππ π) , (π; π) = β1 taqqoslamaning moduli yetarlicha katta boβlganda Eyler kriteriysidan foydalaninsh unchalik qulay emas. Bunda
)
(
hollarda Lejandr simvoli deb ataluvchi va π
π
foydalaniladi.
Taβrif. Quyidagi shatrlarniqanoatlantiruvchi deyiladi:
π
kabi atluvchi simvoldan
)
(
π simvol Lejandr simvoli
π
( )
π
1, ππππ π π ππ π π‘ππ π‘π’π ππππ’π ππ β²π¦ππβπππ£πππππ‘ππ πβππππππ ππ β²ππ π;
= {β1, ππππ π π ππ π π‘ππ π‘π’π ππππ’π ππ β²π¦ππβπππ£πππππ‘ππ πβπππππππππ ππ β²ππ π.
)
(
π simvol a sondan p boβyicha tuzlgan Lejandr simvoli deb taladi, bu yerda a
π
Lejandr simbolining surati, p esa Lejandr simvolining maxraji deyiladi.
Misol. (
7 ) = π, chunki Eyler kriteriysiga asosan, 7
19
19β1
2 β‘ 1 (πππ 19)
boβlgani uchun 7 son 19 modul boβyicha vadratik chegirmadir. 5 son 17 modul
boβyicha kvadratik chegirmamas boβlganligidan
( 5 )
= β1 boβladi.
17
Maβlumki, π
πβ1
2 β‘ 1 (πππ π) , π
πβ1
2 β‘ β1 (πππ π) ekanligiga qarab, a
kvadratik chegirma yoki kvadratik chegirmamas boβladi. Demak, Ljandr simvoli va Eyler kriteriylariga asosan, quyidagini yoza olamiz:
(
π) β‘ π
π
πβ1
2 (πππ π). (1)
Endi Lejandr simvolining quyidagi baβzi bir xossalarini oβrib chiqamiz:
1-xossa. π β‘ π1
(πππ π) => π
)
(
π
= π )
1
(
π
. (2)
Haqiqatan, bitta sinfning elementlari berilgan modul boβyicha yo kvadratik chegirma, yoki kvadratik chegirmamas boβladi. Bunga asosan, (1) ning toβgβrilii kelib chiqadi. Bu xossadan foydalanib, har qanday π β π uhun quyidagini yoza
(
olamiz: (π) = (ππ+π1), (ππ+π1) = π
) boβlgani uchun π = (π1)
boβladi.
1
)
(
π π π π
2-xossa. (1) = 1 .
π π
π
Haqiqatan, π₯2 β‘ 1 (πππ π) taqqoslama doimo yechimga ega boβlib, π₯ β‘
Β±1 (πππ π) uning yehimidir.
(
xossa. β1
π
) = (β1)
πβ1
2 .
(1) taqqoslamaga asosan quyidagini yoza olamiz:
β1 πβ1
( ) = (β1)
π
2 (πππ π) (3).
β1 πβ1
Lekin (
π
) va (β1)
2 larning qiymati Β±1 dan farqli emas. Shu bilan bir
vaqtda p toq tub son boβlgani uchun 1 va -1 lar shu modul boβyicha taqqoslanuvchi
β1 πβ1
boβla olmaydi. Demak, (
π
boβladi.
) va (β1)
2 lar bir vaqtda 1 ga yoki -1 ga teng
xossa. (πβπ) β‘
π
π π
)
β
.
( ( )
π π
Isboti. (1) taqqoslaamaga asosan quyidagini yozish mumkin: (πβπ) β‘
π
πβ1
πβ1
πβ1
π π
πβπ π
(π β π)
π
2 β‘ (π)
2 β (π)
πβ1
2 β‘ (
π
πβ1
) β (
π
π
) (πππ π) yoki (
π
π
) β‘ ( ) β
π
( ) (πππ π) . (π)
π
2 β (π)
2 β‘ (
π
) β (
π
) (πππ π) taqqoslamaning ikkala qismi
a va b lar p modul boβyicha kvadratik chegirma yoki kvadratik chegirmamas boβlsa, 1 ga, a va b larning biri p modul boβyicha kvadratik chegirma, ikkinchisi
esa kvadratik chegirmamas boβlsa, -1 ga teng. Shuning uchun ( πβπ) β‘
π
tenglikni yosa olamiz. Bu xossadan quyidagi natijalar kelib chiqadi:
( π)
π
π
)
.
(
1-natija. (π2) β‘ 1, (πβπ2) β‘ π
π π π
2-natija. Juft sondagi kvadratik chegirmalar yoki kvadratik chegirmamaslar koβpaytmasi doimo kvadratik chegirma boβladi. Toq sondagi kvadratik chegirmamaslar koβpaytmasi yana kvadratik chegirmamas boβladi.
2 π2β1
xossa. (
π
) β‘ (β1) 8 .
Biz bu xossani isbot qilib oβtirmasdan undan amaliy mashgβulotlarda foydalnishning aβzi bir tomonlarin koβrsatib oβtamiz.
π β‘ 8π Β± 1 shakldagi tub son boβlsin. U holda
π2 β 1
=
8
(8π Β± 1)2 β 1
8
= 8π2 Β± 2π β‘ 0 (πππ 2)
Boβlgani uchun ( 2) β‘ 1.
π
π β‘ 8π Β± 3 shakldagi tub son boβlsa,
π2 β 1
=
8
(8π Β± 3)2 β 1
8
= 8π2 Β± 6π + 1 β‘ 1 (πππ 2)
boβadi. Demak, π β‘ 8π Β± 3 shakldagi tub son boβlsa, 2 son p modul boyicha
kvadratik chegirmamas boβlad, yaβni (2)
β‘ β1.
π
xossa. Oβzarolik qonuni.
Agar p va q lar har xil toq tub son boβlsa,
π π
πβ1βπβ1
tenglik oβrinli boβladi.
( ) β (
π π
) β‘ (β1) 2 2 (4)
Bu xossani ham isbot qilmasan uning amaliy mashgβulotlardaqoβllanishini
π πβ1 πβ1 π
bu yerda
2
π) = 1.
(
π
( ) β‘ (β1) 2 β
π
2 ( ), (5)
π
(5) tenglikka asosan, p va q larning kamida bittasi 4m+1 shakldagi son boβlsa,
πβ1 πβ1
π π
(β1)
2 β 2 = 1 boβlib, (
π
) = (
π
) hosil boladi.
Agar p va q larning har biri 4m+3 shaklagi tub son boβlsa,u holda (-1) ning
darajasi toq son boβlib,
(π)
π
π
= β ( )
π
boβladi.
Misol. π₯2 β‘ 426(πππ 491) taqqoslama yechimga egami?
Bu savolga javob berish uchun (426) Lejandr simvolini tuzamiz. 426 = 2 β
491
3 β 71 shakldagi son boβlgani uchun 4- xossaga asosan quyidagicha yozamiz:
( ) (
(426) β‘ 2 β 3
) β ( 71 ) .
491
491
491
491
( 2 ) β‘ β1, chunki 491 β‘ 3 (πππ 8).
491
(
)
( 3 ) β‘ β (491) β‘ β 2
β‘ β (β1 ) = 1, chunki 491 β‘ 3 (πππ 4) va 3 β‘
491 3 3
)
(
)
(
)
(
)
(
)
(
)
3 (πππ 4) hamda 3 β‘ 3 (πππ 8).
(
)
(
( 71 ) β‘ β (491) β‘ β 65 β‘ β 5
β‘ β 71
β‘ β 1 β 6 β‘
491
71 71
71 71
5 13
5 13
)
(
)
(
β ( 2 ) β ( 3 ) β‘ β(β1) 13 β‘ 1 β 1
β‘ 1, chunki 491 β‘ 3(πππ 4), 71 β‘
13 13 3 3
3 (πππ 4 ), 491 β‘ 65 (πππ 71 ), 5 β‘ 1 (πππ 4 ), 13 β‘ 5 (πππ 8).
Demak, ( 426) β‘ (β1 ) β 1 β 1 = β1, ( 426) β‘ β1 , boβlgan uchun berilgan
491
taqqoslama yechimga ega emas.
Adabiyotlar ro'yxati
1. Π.Π‘.Π‘Π°Π»ΠΎΡ
ΠΈΠ΄Π΄ΠΈΠ½ΠΎΠ² Π.Π. ΠΠ°ΡΡΠΈΠ΄Π΄ΠΈΠ½ΠΎΠ². ΠΠ΄Π΄ΠΈΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΡΠ΅Π½Π³Π»Π°ΠΌΠ°Π»Π°Ρ. Π’ΠΎΡ-
ΠΊΠ΅Π½Ρ, Π£Π·Π±Π΅ΠΊΠΈΡΡΠΎΠ½, 1994.
2. A.B. Hasanov. "Oddiy differensial tenglamalar nazariyasiga krish". Samarqand,
2019.
ΠΊΠ° 1974.
ΡΠΊΠ°, 1979.
1959.
2009.
1987.
ο»Ώο»Ώο»ΏΠ.Π‘. ΠΠΎΠ½ΡΡΡΠ³ΠΈΠ½. "ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ". Π.: "Hay-
ο»Ώο»Ώο»ΏΠ.Π€. Π€ΠΈΠ»ΠΈΠΏΠΎΠ². Π‘Π±ΠΎΡΠ½ΠΈΠΊ Π·Π°Π΄Π°Ρ ΠΏΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ. - Π.: ΠΠ°-
ο»Ώο»Ώο»ΏΠ.Π. Π‘ΡΠ΅ΠΏΠ°Π½ΠΎΠ². ΠΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ (8-Π΅ ΠΈΠ·Π΄.). Π.: ΠΠΠ€ΠΠ,
ο»Ώο»Ώο»ΏΠ .Π‘. ΠΡΡΠ΅Ρ, Π.Π . Π―Π½ΠΏΠΎΠ»ΡΡΡΠΊΠΈΠΉ. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΡΠ΅Π½Π³Π»Π°ΠΌΠ°Π»Π°Ρ. Π’ΠΎΡΠΊΠ΅Π½Ρ, 1978.
ο»Ώο»Ώο»ΏΠ.Π. Π’ΠΈΡ
ΠΎΠ½ΠΎΠ², Π.Π. ΠΠ°ΡΠΈΠ»ΡΠ΅Π²Π°, Π.Π. Π‘Π²Π΅ΡΠ½ΠΈΠΊΠΎΠ². ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅-Π½ΠΈΡ. Π£ΡΠ΅Π±Π½ΠΈΠΊ Π΄Π»Ρ Π²ΡΠ·ΠΎΠ². - 5-Π΅ ΠΈΠ·Π΄. - Π.: Π€ΠΠΠΠΠ’ΠΠΠ’, 2005.
ο»Ώο»Ώο»ΏΠ.Π. Π’ΡΠ΅Π½ΠΎΠ³ΠΈΠ½. ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π.: Π€ΠΈΠ·ΠΌΠ°ΡΠ»ΠΈΡ,
ο»Ώο»Ώο»ΏΠ.Π. Π€Π΅Π΄ΠΎΡΡΠΊ. ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π.:ΠΠ°ΡΠΊΠ°, 1985.
ο»Ώο»Ώο»Ώο»ΏΠ.Π. ΠΠ°Π»ΡΡΠ΅Π². ΠΡΠ½ΠΎΠ²Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΡ. Π.: ΠΠ°ΡΠΊΠ°, 1967.
ο»Ώο»Ώο»Ώο»ΏΠ.Π. ΠΠΉΠ½Ρ. ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°ΡΡΠ½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠ΅ ΠΈΠ·Π΄Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ Π£ΠΊΡΠ°ΠΈΠ½Ρ. Π₯Π°ΡΡΠΊΠΎΠ², 1939.
ο»Ώο»Ώο»Ώο»ΏΠ.Π. ΠΠΌΠ΅Π»ΠΊΠΈΠ½. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
. Π.: ΠΠ°ΡΠΊΠ°Π±
|