Integral ostidagi funksiya x = 1[0,2] nuqtada 2-tur uzilishga ega. Demak, Demak, berilgan integral uzoqlashuvchi ekan. F(x, y, y′, y",..., y n ) = 0 (1) shaklda yoziladi. funksiya y′ + у = 0 differensial tenglama yechimi bo`lib, tenglamaning cheksiz ko`p yechimlaridan biridir. Har qanday у = c·e -x ko`rinishdan o`zgacha bo`lishi mumkin emasligini aniqlaymiz. Shu ma`noda, у = с·e -x |
Agar formulaning o`ng tarafidagi har bir xosmas integral yaqinlashuvchi bo`lsa, funksiyadan [a,b] oraliqda olingan xosmas integral ham yaqinlashuvchi bo`ladi
|
bet | 2/7 | Sana | 17.05.2024 | Hajmi | 33,82 Kb. | | #240212 |
Bog'liq Differensial tenglamalarning maxsus yechimi. Klero tenglamasi. Langranj tenglamasiBu sahifa navigatsiya:
- Integral ostidagi funksiya x = 1[0,2] nuqtada 2-tur uzilishga ega. Demak, Demak, berilgan integral uzoqlashuvchi ekan.
- F(x, y, y′, y",..., y n ) = 0 (1) shaklda yoziladi.
- funksiya y′ + у = 0 differensial tenglama yechimi bo`lib, tenglamaning cheksiz ko`p yechimlaridan biridir. Har qanday у = c·e -x
- ko`rinishdan o`zgacha bo`lishi mumkin emasligini aniqlaymiz. Shu ma`noda, у = с·e -x
Agar formulaning o`ng tarafidagi har bir xosmas integral yaqinlashuvchi bo`lsa, funksiyadan [a,b] oraliqda olingan xosmas integral ham yaqinlashuvchi bo`ladi.
Misollar:
1) xosmas integralni hisoblang. Integral ostidagi funksiya x = 1 nuqtada uzilishga ega. Demak,
2) xosmas integralni hisoblang.
Integral ostidagi funksiya x = 1[0,2] nuqtada 2-tur uzilishga ega. Demak,
Demak, berilgan integral uzoqlashuvchi ekan.
Matematika va uning tatbiqlarining muhim masalalari x ni emas, balki uning biror noma`lum y(x) funksiyasini topish masalasi qo`yilgan va tarkibida x, y(x), shu bilan birga uning y′(x), y"(x),...,y(n)(x) hosilalarini o`z ichiga olgan murakkab tenglamalarni yechishga keltiriladi. Masalan, y′ + 2y - x3 = 0, y" = с·ax, у′" + у = 0.
Erkli o`zgaruvchi x ni, noma`lum y(x) funksiyani va uning n tartibli hosilasiga qadar hosilalarini bog`lovchi tenglamaga n-tartibli oddiy diffcrcnsial tcnglama deyiladi. Yuqoridayozilgan tenglamalar, mos ravishda, birinchi, ikkinchi va uchinchi tartibli differensial tenglamalardir. Umumiy ko`rinishda n-tartibli differensial tenglama
F(x, y, y′, y",..., yn) = 0 (1)
shaklda yoziladi.
(1) tenglamani ayniyatga aylantiruvchi va kamida n marta differensial-lanuvchi har qanday у = f(x) funksiyaga differensial tenglama yechimi deyiladi.
Masalan, у = e-x funksiya y′ + у = 0 differensial tenglama yechimi bo`lib, tenglamaning cheksiz ko`p yechimlaridan biridir. Har qanday у = c·e-x funksiya ham, bu yerda, с - ixtiyoriy o`zgarmas, tenglamani qanoatlantiradi. Ushbu differensial tenglama yechilganda, uning yechimi у = с·e-x ko`rinishdan o`zgacha bo`lishi mumkin emasligini aniqlaymiz. Shu ma`noda, у = с·e-x funksiya uning umumiy yechimi deyiladi. Umumiy yechimda ixtiyoriy o`zgarmas с qatnashgani uchun, tenglama yechimlari to`plami yagona ixtiyoriy с o`zgarmasga bog`liq deyiladi.
|
|
Bosh sahifa
Aloqalar
Bosh sahifa
Agar formulaning o`ng tarafidagi har bir xosmas integral yaqinlashuvchi bo`lsa, funksiyadan [a,b] oraliqda olingan xosmas integral ham yaqinlashuvchi bo`ladi
|