• Bipolyar tranzistor fizik parametrlari.
  • Bipolyar tranzistorlar




    Download 0,97 Mb.
    bet1/6
    Sana04.06.2024
    Hajmi0,97 Mb.
    #260058
      1   2   3   4   5   6



    BIPOLYAR TRANZISTORLAR ASOSIY PARAMETRLARI
    REJA:
    KIRISH
    1.Tranzistorning tuzilishi va ishlash prinsipi
    2. Tranzistorning asosiy xarakteristikasi
    3.Tranzistorlarning h parametrlari
    4.Tranzistorlar zanjirga uch xil usulda ulanishi
    XULOSA
    FOYDALANILGAN ADABIYOTLAR

    KIRISH
    Tranzistor uchta soxadan iborat yarim o‘tkazgichli asbobdir. . Urta kismi baza deb deb atalib aralashma kontsentratsiyasi chetki kismlariga nisbatan kam va yupka bo‘ladi. Baza kalinligi LБ elektron yoki kovakning rekombinatsiyalashgunga kadar erkin yugurib utgan masofasi Lд ga nisbatan kichik LБ < LД.bulsa yupka baza deb yuritiladi. LД shuningdek, diffuziya siljish uzunligi deb ham ataladi. Chetki kismlaridan biri emitter, ikkinchisi kollektor deb ataladi. Tranzistorning tuzilishi triodga kiyoslansa, emitter – katodga, baza- turga, kollektor - anodga uxshatiladi.
    Emitter degan nom elektronlar bazaga purkaladi in’ektsiya, ya’ni injektsiyalanadi degan ma’noni anglatadi. Mana shu xususiyati bilan elektron lampadagi katoddan termoelektron emissiya xodisasi tufayli elektronlar hosil bulishi orasidagi fark tushuntiriladi. Tranzistor va vakuumli triod ishlash printsipi jihatidan ham fark kiladi. Triodda turga kuchlanish berilsa ham, anod toki hosil bo‘ladi. Tranzistorda esa baza toki bulmasa, kollektor toki ham bulmaydi. Diskret tranzistorda r-n utishlar yarim o‘tkazgichli plastinaning karama – qarshi tomonlarida joylashgan. Utishlari bir tomonga joylashgan tranzistorlar ham mavjud. Bunday tranzistorlar integral tranzistorlar deb ataladi. Emitter soxasida aralashma miqdori ko‘p rok bo‘ladi. Kollektor zaryad tashuvchilarni ekstraktsiyalash (sugurib olish) vazifasini bajaradi.
    Tranzistorning bazasi n yoki р utkazuvchanlikka ega bulishi mumkin. Shunga kura chetki kismlari р yoki n utkazuvchanlikka ega bo‘ladi. Demak, tranzistor р – n - р yoki n- р- n strukturali bo‘ladi. Tranzistorda ikkita р-n utish mavjud. Buni xisobga olgan holda tranzistorni ketma –ket ulangan ikkita boglangan diod sifatida qarash mumkin. Uning chetki uchlariga kuchlanish ulanganda r-n utishlarning biri tugri utish bo‘lsaikkinchisi teskari bulganligidan xar ikkala yunalishda ham sistemadan tok utmaydi. Tranzistorni ikkita tok manbaiga ulaylik. K kalit ochik bo‘lganda emitter zanjirida tok bulmaydi.



    Kollektor zanjirida esa oz miqdorda teskari р-n utish toki ( IкБт, т- teskari demak) bo‘ladi. K- kalit ulanganda emitter zanjirida tok hosil bo‘ladi.


    Chunki Еэ. manba kuchlanishi emitter – baza yo‘nalishida tugri р-n utish hosil kiladi. Bunda ko‘pchilik kovaklar emitterdan bazaga utganda LБ > LД. bulganligidan kollektor o‘tishiga yetib boradi. Natijada kollektor toki ortadi. Umuman olganda tranzistorning asosiy xossasi bazada borayotgan jarayonlar bilan belgilanadi. Bazada chet moddalar taksimlanishi natijasida unda asosiy bo‘lmagan zaryadlarni emitterdan kollektorga o‘tishiga yordam beruvchi elektr maydon bo‘lsabunday tranzistor dreyfli tranzistor deyiladi. Agar bazada xususiy maydon bulmasa, asosiy bo‘lmagan zaryad tashuvchilar baza orqali asosan diffuziya tufayli utsa bunday tranzistor dreyfsiz tranzistor deb ataladi.Tranzistorning chikish xarakteristikasida Iэ = 0. ga mos kelgan xarakteristika K kalit ochik bulgan holni ifodalaydi. Harakteristikadan kurinadiki kollektor - bazaga quyilgan manfiy kuchlanish qiymati ortishi bilan tokning sezilarli darajada ortishi kuzatilmaydi. Buni tushuntirish uchun tranzistorning potentsial diagrammasi bilan tanishib chikaylik. Unda tranzistorning zaryadlarga kambagallashgan soxalari ham ko‘rsatilgan. Emitter va kollektor soxalarida zaryadlangan zarrachalar kontsentratsiyasi katta bulganligidan kambagal soxa asosan baza katlamida bulib, ikki soxa orasidagi masofa ya’ni bazaning effektiv kalinligi baza kalinligidan kichik bo‘ladi. Kollektordagi manfiy kuchlanishning ortishi kollektor o‘tishidagi kambagal katlamning kengayishiga olib keladi. Natijada bazaning effektiv kalinligi kamayadi. Bu xodisa baza kalinligining modulyatsiyasi deb ataladi.



    Emitter toki fakat kovaklar xarakati tufayli hosil bulmasdan elektronlar xarakati bilan ham boglik. Kollektorda esa tok fakat kovaklar xarakati tufayli vujudga keladi. Shu sababli emitterning samadorligi


     =Iэр / Iэр+ Iэн
    orqali aniklanadi. Bu yerda Iэр - kovaklar xarakati tufayli hosil bulgan emitter toki; Iэн -. elektronlar xarakati tufayli hosil bulgan emitter toki.



    Emitterning bazaga injektsiyalangan (purkalgan) bir kism kovaklar bazadan asosiy zaryad tashuvchilar – elektronlar bilan rekombinatsiyalanadi. Baza orqali o‘tib boruvchi kovaklar, baza uchun asosiy bo‘lmagan tok tashuvchi zarrachalar xisoblanadi. Kuyidagi  = Iк- IКБТ./ Iэр nisbat bilan aniklanadigan kattalik baza orqali utuvchi asosiy bo‘lmagan zaryad tushuvchilarni utkazish koefftsenti deb yuritiladi.Emitterning samaradorligi va utkazish koeffitsiyenti tranzistor katta signal bilan ishlagandagi tok uzatish koefftsenti.h21Б. ni belgilaydi.


    Bu koeffitsent h21Б= = - da teng. Kollektorga kirib keluvchi tok yo‘nalishi musbat yo‘nalishi musbat yunalish deb qabul qilinganligidan «minus» ishora quyiladi. h21B koeffitsiyenti tranzistorning muxim parametrlaridan biri xisoblanib sifatli tayorlangan tranzistorlarda birga yakin bo‘ladi. Tranzistorni zanjirga ulash umumiy bazali(UB) sxema deb yuritiladi. Bu sxema buyicha ЕЭБ va ЕКБ manbaalarning ulanish usuliga kura tratzistorlar turli rejimda ishlashi mumkin.
    Shulardan tranzistor aktiv rejimda ishlaganda undan utuvchi tokni boshkarish samarali bo‘ladi.
    Umuman olganda tranzistorlar zanjirga uch xil usulda ulanishi mumkin. Е1 va Е2. batariyalar hosil kilinadigan tok zanjirida emitter xar ikkalasi uchun umumiydir. Shu sababli bunday ulash umumiy emitterli sxema deb yuritiladi. Xuddi shunday umumiy kollektorli sxemalarni ham tuzish mumkin. Tranzistorlardan signallarni kuchaytirish, impulsli sxemalar tuzish va x larda foydalanish mumkin. Shu sababli tranzistorlarlarga signal ta’sir ettirilganda uning parametirlari qanday o‘zga rishga aloxida ahamiyat beriladi.

    Tranzistorlarga kichik signal ta’sir ettirilganda uni chiziqli aktiv nosimmetrik turt kutbli deb qarash mumkin. Kichik signal ta’sir ettirish deyilganda signal amplitudasi 1,5 barabor orttirilganda tranzistor parametrlari 10 % dan ko‘p ga ortmaydigan hol kuzda tutiladi. Shunda turt kutbli parametrlarni xisoblash usulini kullash mumkin. Odatda tranzistorlarning h parametrlarini UB va UE sxemalari uchun xisoblanadi. Bu sxemalar yordamida topilgan parametrlar o‘zaro quyidagicha boglangan. ;


    h11б h11э / 1+h21э 2б h12б  h11э h22э / 1+ h21э
    h21б  h21э / 1+h21э ; h22б  h22э / 1+ h21э
    Shularning eng ko‘p ishlatiladigan UB sxemada h12б = -  = Iк / Iэ Uкб соnst
    va UEsxema uchun h21э = -  = Iк / Iб Uкэ соnst
    Bulib ular o‘zaro quyidagicha boglangan  =  / 1- 
    Tranzistordan utuvchi toklarni kuchlanishga boglikligi statik volt - amper xarakteristikalari orqali ifodalanadi. Ular kirish va chikish xarakteristikalariga ajratiladi. Kirish xarakteristikasi deyilganda chikish zanjirining kuchlanishi o‘zgarmas saklangan holda, kirish zanjiridagi tokning kirish kuchlanishiga bogliklik grafigi tushuniladi.
    Tranzistordan kuchaytirgich sifatida foydalanilganda umumiy emitterli sxemada signalni kuchlanish buyicha 10-200 marta kuchaytirish mumkin. Shu sabali UE sxema boshkalariga nisbatan ko‘prok kullaniladi. Lekin UE sxemada qarshiligi 500-1000 Om, chikish qarshiligi 2-20 kOM atrofida bo‘ladi.
    Kirish qarshiligi kichik bulganida boshka kurilmalarga moslash davrida kiyinchiliklar tugiladi. UK sxemada kuchlanish buyicha kuchaytirish UE niki bilan bir xil. UB sxemada tok buyicha kuchaytirish bir atrofida kuchlanish buyicha kuchaytirish UE niki kabi bo‘ladi. Kirish qarshiligi bu sxemada juda kichik 10-200 Om atrofida bulganligidan ko‘pincha elektr signallarini generatsiyalash va shunga uxshash kurilmalarda ishlatiladi.
    Tranzistor statik xarakteristikalari kollektor zanjiriga yuklama qo‘yilmagan holda o‘rnatilgan kirish va chiqish toklari va kuchlanishlar orasidagi o‘zaro bog‘liqlikni ifodalaydi. Har bir ulanish uchun statik xarakteristikalar oilasi ma’lumotnomalarda keltiriladi.
    Eng asosiylari bo‘lib tranzistorning kirish va chiqish xarakteristikalari hisoblanadi. Qolgan xarakteristikalar kirish va chiqish xarakteristikalaridan hosil qilinishi mumkin. UB sxemasi uchun kirish statik xarakteristikasi bo‘lib UKB = const bo‘lgandagi IE= f (UEB) bog‘liqlik, UE sxemasi uchun esa UKE = const bo‘lgandagi IB=f(UBE) bog‘liqlik hisoblanadi. Kirish xarakteris-tikalarining umumiy xarakteri odatda to‘g‘ri yo‘nalishda ulangan p-n bilan aniqlanadi. Shu sababli tashqi ko‘rinishiga ko‘ra kirish xarakteristiklari eksponensial xarakterga ega (1- rasm).
    Rasmlardan ko‘rinib turibdiki, chiqish kuchlanishining o‘zgarishi kirish xarakteristiklarini siljishiga olib keladi.
    Xarakteristikaning siljishi Erli effekti (baza kengligining modulyatsiyasi) bilan aniqlanadi. Buning ma’nosi shundaki, kollektor o‘tishdagi teskari kuchlanishning ortishi uning kengayishiga olib keladi, bu vaqtda baza sohasidagi kengayish uning kengligining kichrayishi hisobiga sodir bo‘ladi. Baza kengligining kichrayishi ikkita effektga olib keladi: zaryad tashuvchilar rekombinatsiyasining kamayishi hisobiga baza tokining kamayishi va bazadagi asosiy bo‘lmagan zaryad tashuvchilar konsentratsiya gradientining ortishi hisobiga emitter tokining ortishi.



    Shu sababli kollektor o‘tishdagi teskari kulanishning ortishi bilan UB sxemadagi kirish xarakteristika chapga, UE sxemada esa o‘ngga siljiydi. UB sxemadagi tranzistorning chiqish xarakteristikalari oilasi bo‘lib IE =const bo‘lgandagi IK= f (UKB) bog‘liqlik, UE sxemada esa IB =const bo‘lgandagi IK= f (UKE) bog‘liqlik hisoblanadi.


    Chiqish xarakteristikalari ko‘rinishiga ko‘ra teskari ulangan diod VAX siga o‘xshaydi, chunki kollektor o‘tish teskari ulangan. Xarakteristikalarni qurishda kollektor o‘tishning teskari kuchlanishini o‘ngda o‘rnatish qabul qilingan (2 – rasm).



    2 a - rasmdan ko‘rinib turibdiki, UB sxemadagi chiqish xarakteris-tikalari ikki kvadrantlarda joylashgan: birinchi kvadrantdagi VAX aktiv ish rejimiga, ikkinchi kvadrantdagisi esa – to‘yinish ish rejimiga mos keladi. Aktiv rejimda chiqish toki (7.1) nisbat bilan aniqlanadi. Aktiv rejimga mos keluvchi xarakteristika sohalari abssissa o‘qiga uncha katta bo‘lmagan qiyalikda, deyarli parallel o‘tadilar. Qiyalik yuqorida aytib o‘tilgan Erli effekti bilan tushuntiriladi. IE=0 bo‘lganda (emitter zanjiri uzilganda) chiqish xarakteristikasi teskari siljigan kollektor o‘tish xarakteristikasi ko‘rinishida bo‘ladi. Emitter o‘tish to‘g‘ri yo‘nalishda ulanganda injeksiya toki hosil bo‘ladi va chiqish xarakteristiklari
    kattalikka chapga siljiydi va x.z.
    UE sxemasida ulangan tranzistorning chiqish xarakteristikasi UB sxemada ulangan tranzistorning chiqish xarakteristikasiga nisbatan katta qiyalikka ega. Chunki uning ko‘rinishiga Erli effekti katta ta’sir ko‘rsatadi. Bog‘liqliklarning umumiy xarakteri (2 b-rasm) kollektor va baza toklari orasidagi quyidagi bog‘liqlik bilan aniqlanadi:
    7.1.
    bu yerda IKE0 – IB=0 (uzilgan baza) bo‘lgandagi kollektorning to‘g‘ri toki. IKE0 toki IK0 tokidan martaga katta bo‘ladi, chunki UBE=0 bo‘lganda UKE kuchlanishining bir qismi emitter o‘tishga qo‘yilgan bo‘ladi va uni to‘g‘ri yo‘nalishda siljitadi.
    Shunday qilib, IKE0=( )IK0 – ancha katta tok bo‘lib, tranzistor ishining buzilishini oldini olish maqsadida baza zanjirini uzish kerak.
    Baza toki ortishi bilan kollektor toki
    kattalikka ortadi va x.z., va xarakteristika yuqoriga siljiydi. UE sxemadagi chiqish VAXlarining asosiy xossasi shundaki, ham aktiv va ham to‘yinish rejimlarida bir kvadrantda joylashadi. Ya’ni, elektrodlarning berilgan kuchlanish ishoralarida ham aktiv rejim, ham to‘yinish rejimida bo‘lishi mumkin. Rejimlar almashinishi kollektor o‘tishdagi kuchlanishlar nolga teng bo‘lganda sodir bo‘ladi.

    • Kollektor soha qarshiligini hisobga olmagan holda UKE = UKB + UBE bo‘lgani uchun, talab qilinayotgan bo‘sag‘aviy kuchlanish qiymati U*KE = UBE bo‘ladi. UBE qiymati berilgan baza tokida kirish xarakteristikasidan aniqlanadi. Bipolyar tranzistor fizik parametrlari. Tok bo‘yicha α va β koeffisientlar statik parametrlar hisoblanadi, chunki ular o‘zgarmas toklar nisbatini ifodalaydilar. Ulardan tashqari tok o‘zgarishlari nisbati bilan ifodalanidigan differensial kuchaytirish koeffisientlari ham keng qo‘llaniladi. Statik va differensial α kuchaytirish koeffisientlari bir biridan farq qiladilar, shu sababli talab qilingan hollarda ular ajratiladi. Tok bo‘yicha kuchaytirish koeffisientining kollektordagi kuchlanishga bog‘liqligi Erli effekti bilan tushuntiriladi.

    • UE sxemasi uchun tok bo‘yicha differensial kuchaytirish koeffisienti temperaturaga bog‘liq bo‘lib baza sohasidagi asosiy bo‘lmagan zaryad tashuvchilarning yashash vaqtiga bog‘liqligi bilan tushuntiriladi. Temperatura ortishi bilan rekombinatsiya jarayonlari sekinlashishi sababli, odatda tranzistorning tok bo‘yicha kuchaytirish koeffisientining ortishi kuzatiladi.

    • Tranzistor xarakteristikalarining temperaturaviy barqaror emasligi asosiy kamchilik hisoblanadi. Yuqorida ko‘rib o‘tilgan tok bo‘yicha uzatish koeffisientidan tashqari, fizik parametrlarga o‘tishlarning differensial qarshiliklari, sohalarning hajmiy qarshiliklari, kuchlanish bo‘yicha teskari aloqa koeffisientlari va o‘tish hajmlari kiradi.

    • Tranzistorning emitter va kollektor o‘tishlari o‘zining differensial qarshiliklari bilan ifodalanadilar. Emitter o‘tish to‘g‘ri yo‘nalishda siljiganligi sababli, uning differensial qarshiligi rE ni ifodani qo‘llab aniqlash mumkin: (7.2).

    • bu yerda IE – tokning doimiy tashkil etuvchisi. U kichik qiymatga ega (tok 1 mA bo‘lganda rE=20-30 Om ni tashkil etadi) bo‘lib, tok ortishi bilan kamayadi va temperatura ortishi bilan ortadi.

    • Tranzistorning kollektor o‘tishi teskari yo‘nalishda siljiganligi sababli, IK toki UKB kuchlanishiga kuchsiz bog‘liq bo‘ladi. Shu sababli kollektor o‘tishning differensial qarshiligi =1Mom bo‘ladi.

    • Baza qarshiligi rB bir necha yuz Omni tashkil etadi. Yetarlicha katta baza tokida baza qarshiligidagi kuchlanish pasayishi baza va emittter tashqi chiqishlari kuchlanishiga nisbatan emitter o‘tishdagi kuchlanishni kamaytiradi.

    • Kichik quvvatli tranzistorlar uchun kollektor qarshiligi o‘nlab Om, katta quvvatliklariniki esa birlik Omlarni tashkil etadi.

    • Emittter soha qarshiligi yuqori kiritmalar konsentratsiyasi sababli baza qarshiligiga nisbatan juda kichik.

    • Bipolyar tranzistorlarning xususiy xossalari asosiy bo‘lmagan zaryad tashuvchilarning baza orqali uchib o‘tish vaqti va o‘tishlarning to‘siq sig‘imlarining qayta zaryadlanish vaqti bilan aniqlanadilar.

    • Bu ta’sirlarning nisbiy ahamiyati tranzistor konstruksiyasi va ish rejimiga, hamda tashqi zanjir qarshiliklariga bog‘liq bo‘ladi.

    • Juda kichik kirish signallari va aktiv ish rejimi uchun bipolyar tranzistorni chiziqli to‘rt qutblik ko‘rinishida ifodalash mumkin va bu to‘rtqutblikni biror parametrlar tizimi bilan belgilash mumkin. Bu parametrlarni h–parametrlar deb atash qabul qilingan. Ularga quyidagilar kiradi: h11 – chiqishda qisqa tutashuv bo‘lgan vaqtdagi tranzistorning kirish qarshiligi; h12 – uzilgan kirish holatidagi kuchlanish bo‘yicha teskari aloqa koeffisienti; h21 –chiqishda qisqa tutashuv bo‘lgan vaqtdagi tok bo‘yicha kuchaytirish (uzatish) koeffisienti; h22 –uzilgan kirish holatidagi tranzistorning chiqish o‘tkazuvchanligi. Barcha h – parametrlar oson va bevosita o‘lchanadi.

    • Elektronika bo‘yicha avvalgi adabiyotlarda kichik signalli parametrlarning chastotaviy bog‘liqliklariga juda katta e’tibor qaratilgan. Hozirgi vaqtda 10 GGs gacha bo‘lgan chastotalarda normal ishni ta’minlaydigan tranzistorlar ishlab chiqarilmoqda. Bunday xollarda talab qilinayotgan chastota xarakteristikalarini olish uchun ma’lumotnomadan kerakli tranzistor turini tanlash kerak.


    Download 0,97 Mb.
      1   2   3   4   5   6




    Download 0,97 Mb.