10-variant
1.
Matematik kutilish quyidagi xossalari.
Ehtimollar
nazariyasi, matematik kutilishda
kelajakdagi natijalarni
bashoratlash uchun va masalalarni o'rganishda qo'llaniladigan ilmiy
modellarni shakllantirishda ishlatiladi. Bunda quyidagi xossalarni ko'rib
chiqish mumkin:
1. O'rganish modeli: Ehtimollar nazariyasi masalalarni tahlil qilish va
ularni ko'rib chiqishda o'rganish modelini rivojlantirishga yo'l qo'yar. Bu,
masalalarni hal qilish va yechish uchun keng doirali, umumiy qoida yoki
formulalarni o'z ichiga oladi.
2. Amaliyot va ishlatish: Ehtimollar nazariyasi matematik amaliyotda va
rivojlanayotgan sohalarda qo'llaniladi. Bu, matematik modellarni haqiqiy
hayotga qo'llash uchun ularga ishlatish va
natijalarni bashoratlashda
muhimdir.
3. Statistika va probability: Ehtimollar nazariyasi, ma'lumotlarni to'plam,
tahlil qilish va natijalarni prognozlashda qo'llanadi. Bu, matematik
modellarni statistik ma'lumotlarga asoslangan holda yaratishda va
natijalarni aniqlashda yordam beradi.
4. Algoritm va kompyuter modellashtirish: Ehtimollar nazariyasi,
matematik modellalarni kompyuter algoritmlariga
aylantirishda va ularga
amaliyotda ishlatishda ishlatiladi. Bu, boshqa
sohalardagi matematik
modellalarni yaratishda ham muhimdir.
Ehtimollar nazariyasi, matematikning amaliyoti va qo'llanilishi uchun
muhimdir va matematik modellalarni o'rganuvchilar va
rivojlanayotgan
sohalar bo'ylab foydalaniladi.
2.
X diskrеt tasodifiy miqdor ushbu taqsimot qonuni bilan bеrilgan:
X
0
1
2
3
4
P
0,2
0,4
0,3
0,08
0,02
M(X), D(X) va
(X) larni toping.