• . PySparkni o‘rnatish: PySpark-dan foydalanish uchun avval, PySpark kutubxonasi o‘rnatilishi kerak. pip install pyspark 2. PySpark yaratish
  • 3. Ma’lumotni yuklash
  • Image Recognition




    Download 5,69 Mb.
    bet131/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   127   128   129   130   131   132   133   134   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    3. PySpark MLlib:
    PySpark MLlib orqali mashina o‘qitish algoritmlarini ishlatish:
    from pyspark.sql import SparkSession
    from pyspark.ml.feature import VectorAssembler
    from pyspark.ml.regression import LinearRegression # Spark session yaratish
    spark = SparkSession.builder.appName("example").getOrCreate()
    # Ma’lumotlarni yuklab olish
    data = spark.read.csv("path/to/data.csv", header=True, inferSchema=True)
    # X va y larni tayyorlash
    feature_cols = ["feature1", "feature2"]
    assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
    data = assembler.transform(data).select("features", "label")
    # Modelni o‘rnating va o‘qitish
    lr = LinearRegression()
    model = lr.fit(data) # Modelni baholash
    print("Coefficient: ", model.coefficients)
    print("Intercept: ", model.intercept)
    Bu misollar sizga Python bilan Big Data loyihalarida ishlash uchun ko‘proq yordam berishi mumkin. Lekin, ular quyidagi vaziyatlarda mos kelmagan bo‘lishi mumkin: ma’lumotlar hajmi juda katta bo‘lishi, distributiv qulaylash texnologiyalari yoki ML algoritmlarini foydalanishni talab etish. Iltimos, o‘zingizning maqsadlaringiz va tizmingiz uchun mos keladigan misollarni o‘rganib chiqishingizga salmoqchi.
    Mashinali o‘qitishni Big Data loyihalariga integratsiya qilish uchun PySpark kutubxonasidan foydalanish quyidagi bosqichlar orqali amalga oshiriladi:
    1. PySparkni o‘rnatish:
    PySpark-dan foydalanish uchun avval, PySpark kutubxonasi o‘rnatilishi kerak.
    pip install pyspark
    2. PySpark yaratish:
    from pyspark.sql import SparkSession # Spark session yaratish
    spark = SparkSession.builder.appName("example").getOrCreate()
    3. Ma’lumotni yuklash:
    Ma’lumotni yuklash uchun PySpark DataFrame ishlatiladi. Ma’lumotni CSV, Parquet, Avro, JSON yoki boshqa formatlarda yuklash mumkin.
    # CSV dan ma’lumot yuklash
    data = spark.read.csv("path/to/data.csv", header=True, inferSchema=True)

    Download 5,69 Mb.
    1   ...   127   128   129   130   131   132   133   134   ...   182




    Download 5,69 Mb.