• 5. Mashinali o‘qitish modelini tayyorlash va o‘qitish
  • 6. Tavsiyalar tizimini integratsiya qilish
  • Image Recognition




    Download 5,69 Mb.
    bet132/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   128   129   130   131   132   133   134   135   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    4. Ma’lumotni tayyorlash:
    Mashina o‘qitish algoritmlarini ishlatish uchun, ma’lumotlarni tayyorlash zarur. Masalan, VectorAssembler orqali mavjud o‘zgaruvchilarni bir vectorga joylashtirish:
    from pyspark.ml.feature import VectorAssembler
    feature_cols = ["feature1", "feature2"]
    assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
    data = assembler.transform(data).select("features", "label")
    5. Mashinali o‘qitish modelini tayyorlash va o‘qitish:
    Masofaviy qo‘llanma uchun MLlib kutubxonasidan foydalanish mumkin. Modelni tayyorlash, o‘qitish va baholashni o‘rganamiz:
    from pyspark.ml.regression import LinearRegression
    from pyspark.ml.evaluation import RegressionEvaluator
    # Modelni tayyorlash va o‘qitish
    lr = LinearRegression()
    model = lr.fit(data)# Modelni baholash
    predictions = model.transform(data)
    evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
    rmse = evaluator.evaluate(predictions)
    print(f"Root Mean Squared Error (RMSE): {rmse}")
    6. Tavsiyalar tizimini integratsiya qilish:
    Tavsiyalar tizimini integratsiya qilish uchun PySpark kutubxonasi orqali ishlatiladigan mashhur algoritmalar mavjud. Misol uchun, ALS (Alternating Least Squares) algoritmi, PySpark MLlib dagi tavsiyalar tizimida ishlatiladi.
    from pyspark.ml.recommendation import ALS
    # ALS modelini tayyorlash va o‘qitish
    als = ALS(rank=10, maxIter=5, userCol="userId", itemCol="itemId", ratingCol="rating")
    model = als.fit(training_data)
    # Foydalanuvchi uchun mahsulotlarni tavsiya qilish
    user_recommendations = model.recommendForAllUsers(5)
    Bu misol, PySpark orqali mashina o‘qitish algoritmlarini Big Data loyihalari uchun integratsiya qilishni ko‘rsatadi. Sizning maqsadlaringizga qarab, foydalanilayotgan algoritmlar, ma’lumotlar strukturasini va mahsulotlarni tanlash usullarini o‘zgartirishingiz mumkin.

    Download 5,69 Mb.
    1   ...   128   129   130   131   132   133   134   135   ...   182




    Download 5,69 Mb.