• 2. Neyron tarmoq yordamida ma’lumotlarga asoslangan bashorat
  • Neyron tarmoq yordamida tasvirni aniqlash




    Download 5,69 Mb.
    bet176/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   172   173   174   175   176   177   178   179   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    1. Neyron tarmoq yordamida tasvirni aniqlash
    Rasmlarni yuklash va tahlil qilish uchun Flash API:
    from flask import Flask, render_template, request, jsonify
    from PIL import Image
    import numpy as np
    import tensorflow as tf
    app = Flask(__name__)
    model = tf.keras.applications.MobileNetV2(weights='imagenet’)
    def preprocess_image(image_path):
    img = Image.open(image_path)
    img = img.resize((224, 224))
    img_array = np.array(img) / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    return img_array
    def predict_image(image_array):
    predictions = model.predict(image_array)
    label = tf.keras.applications.mobilenet_v2.decode_predictions(predictions)
    return label[0][0][1]
    @app.route('/', methods=['GET’, 'POST’])
    def index():
    if request.method == 'POST’:
    file = request.files['file’]
    if file:
    image_path = "uploads/" + file.filename
    file.save(image_path)
    image_array = preprocess_image(image_path)
    prediction = predict_image(image_array)
    return render_template('index.html', prediction=prediction, image_path=image_path)
    return render_template('index.html')
    if __name__ == '__main__':
    app.run(debug=True)
    2. Neyron tarmoq yordamida ma’lumotlarga asoslangan bashorat
    Kirish asosida bashorat qilish uchun Flash API:
    from flask import Flask, render_template, request, jsonify
    import numpy as np
    import tensorflow as tf
    app = Flask(__name__)
    model = tf.keras.models.load_model('your_model_path.h5')
    def preprocess_data(input_data):
    processed_data = input_data # Misol: hozircha oldindan ishlov berilmagan
    return np.array([processed_data])
    def predict_data(data):
    predictions = model.predict(data)
    return predictions[0][0]
    @app.route('/', methods=['GET’, 'POST’])
    def index():
    if request.method == 'POST’:
    input_data = float(request.form['input_data’])
    processed_data = preprocess_data(input_data)
    prediction = predict_data(processed_data)
    return render_template('index.html', prediction=prediction, input_data=input_data)
    return render_template('index.html')
    if __name__ == '__main__':
    app.run(debug=True)
    Ushbu kod Index deb nomlangan HTML shablonini taklif qiladi.sizning ehtiyojlaringizga qarab sozlashingiz mumkin bo‘lgan html.
    Shuningdek, veb-ilovadagi xavfsizlik va xatolarni qayta ishlashni, shuningdek, ishlab chiqarishga joylashtirish uchun qaramlik va konfiguratsiyani boshqarishni unutmang.
    Neyron tarmoqlari ma’lumotlarni qayta ishlash va naqshni aniqlash, tasniflash, regressiya va boshqalar kabi turli muammolarni hal qilish uchun kuchli vositani taqdim etadi. Ularning veb-loyihalarga integratsiyasi funksionallikni yaxshilashi va aniqroq va aqlli echimlarni taqdim etishi mumkin. Python veb-loyihalarida neyron tarmoqlardan foydalanish bo‘yicha bir necha asosiy qadamlar:

    Download 5,69 Mb.
    1   ...   172   173   174   175   176   177   178   179   ...   182




    Download 5,69 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Neyron tarmoq yordamida tasvirni aniqlash

    Download 5,69 Mb.