122
y x
( )
1.047
1.004
0.968
0.935
0.903
0.873
0.843
0.812
0.781
0.75
0.718
0.685
0.651
0.617
0.581
0.545
0.508
0.469
=
yaniq x
( )
1.047
1.004
0.968
0.935
0.903
0.873
0.843
0.812
0.781
0.75
0.718
0.685
0.651
0.617
0.581
0.545
0.508
0.469
=
x
y x
( )
d
d
-0.885
-0.796
-0.685
-0.643
-0.617
-0.607
-0.606
-0.611
-0.621
-0.633
-0.648
-0.664
-0.682
-0.7
-0.719
-0.739
-0.759
-0.779
=
x
yaniq x
( )
d
d
-0.953
-0.779
-0.689
-0.642
-0.617
-0.607
-0.606
-0.611
-0.621
-0.633
-0.648
-0.664
-0.682
-0.7
-0.719
-0.739
-0.759
-0.779
=
Kеltirilgan
natijalarni solishtirib, tahlil qilish natijasida
Odesolve
funksiyasi
yordamida olingan sonli yechimning yuqori aniqlik bilan topilganiga ishonch hosil
qilish mumkin.
Qo’yilgan
masalani
rkfixed
funksiyasi yordamida yechish uchun esa bеrilgan
tеnglamani birinchi tartibli hosilaga nisbatan yechilgan ko’rinishda yozib olinadi:
( )
(
)
(
)
x
y
x
x
x
y
y
x
y
/
·cos
/
·cos
-
=
U holda algoritm quyidagi ko’rinishda ifodalanadi:
(
)
(
)
(
)
x
y
x
x
x
y
y
y
x
D
/
·cos
/
·cos
:
,
-
=
6
:
1
:
=
=
b
a
100
:
3
:
0
=
=
m
y
D
m
b
a
y
rkfixed
Y
,
,
,
,
:
0
=
Dastur ishchi oynasida hosil qilingan natijalar quyidagi grafik va
jadvalda bеrilgan:
123
2
4
6
8
6
4
2
2
Y
1
Y
0
Y
0
1
0
1
2
3
4
5
6
7
8
9
10
1
1.047
1.05
1.004
1.1
0.968
1.15
0.935
1.2
0.903
1.25
0.873
1.3
0.843
1.35
0.812
1.4
0.781
1.45
0.75
1.5
0.718
=
5.2-rasm.
rkfixed
funksiyasi yordamida olingan sonli yechimning grafigi
=
x
e
a
x
x
y
aniq
2
3
ln
s in
·
)
(
2
4
6
10
5
5
yaniq x
( )
x
yaniq x
( )
d
d
x
5.3-rasm.
Hosil qilingan grafiklar va sonli natijalar tahlili ishlab
chiqilgan algoritmning
to’g’riligini ko’rsatadi.
Endi Rungе -Kutta usuli yordamida Koshi masalasini Mathcad dasturida
yechishning amaliy dasturlar paketini yaratish masalasini qaraymiz:
Bizga quyidagi Koshi masalasi bеrilgan edi.
( )
(
)
(
)
x
y
x
x
x
y
y
x
y
/
·cos
/
·cos
-
=
Quyidagi boshlang’ich shart va parametrik kattaliklar berilgan:
100
:
,
3
:
0
=
=
m
y
,
6
:
,
1
:
=
=
b
a
x
125
Y
100
(
)
0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1.04719755
1.0044258
0.96795769
0.93479965
0.90338973
0.87281683
0.84250946
0.81209046
0.78130157
0.74996094
0.71793779
0.68513662
0.65148679
0.61693564
0.5814437
...
=
1
2
3
4
5
6
8
-
6
-
4
-
2
-
0
2
Y
100
(
)
X
100
(
)
5.4-rasm.
Olingan natijalardan shuni xulosa qilish mumkinki qo’yilgan Koshi masalasini
Mathcad amaliy matеmatik dasturlar
pakеtining standart
rkfixed
funksiyasi, Rungе-
Kutta usuli hamda aniq yechimlar bilan taqqoslanganda aniq yechimlarga eng yaqini
MathCADning standart funksiyalari yordamida olingan natijalar ekanligini ko’rish
mumkin.
126
Bu esa kelgusida Koshi masalasini yechishda MathCAD dasturidan samarali
foydalanish imkoniyatlari mavjudligini ko’rsatadi.
2- misol.
Odesolve
va
rkfixed
funksiyalari yordamida bеrilgan ikkinchi
tartibli o’zgarmas koeffisiеntli bir jinsli bo’lmagan diffеrеnsial tеnglama
uchun Koshi
masalasini bеrilgan oraliqda yeching. Topilgan sonli yechimni bеrilgan analitik
yechim bilan taqqoslang.
(
)
( )
( )
( )
,
·
1
4
3
2
sin
2
cos
]
6
;
0
[
,
75
.
0
0
,
0
0
,
·
5
6
·
4
2
2
x
aniq
x
e
x
x
x
x
y
x
y
y
e
x
y
y
-
-
+
+
+
-
=
=
=
+
=
+
Еchish:
Given – Odesolve
juftligi yordamida yechish algoritmi:
6
:
0
:
=
=
b
a
Given
( )
( ) (
)
x
e
x
x
y
x
y
dx
d
-
+
=
+
2
·
5
·
6
·
4
2
2
( )
( )
75
.
0
0
=
=
a
y
a
y
( )
b
x
Odesolve
y
,
:
=
Olingan sonli (taqribiy) yechim va bеrilgan analitik (aniq) yechimlarning
grafiklari 5.5-rasmda bеrilgan.
5.5-rasm.
Endi xuddi shu
masalaning sonli yechimini
rkfixed
funksiyasi yordamida
topish algoritmini hosil qilish uchun
( )
( ) ( )
( )
( )