Xulosa.
Ushbu tadqiqotda biz O‘zbekistonda oliy ta’lim muassasalariga hujjat topshirgan
abiturentlarning imtihondagi muvaffaqiyatini neyro-noravshan tizimlar asosida bashorat
qilish modeli va Veb-saytini yaratdik. Ishlab chiqilgan ANFIS modeli abiturentlarning
muvaffaqiyatini bashoratlashda eng samarali usul deb qaralmoqda. Ushbu model
o‘zgaruvchilarining aynan bitta yo‘nalishga moslanmagini bois, barcha yo‘nalishda
tayyorlanayotgan abiturentlar uchun mos keladi. Ishlab chiqilgan model boshqa boshorat
modellariga qaraganda aniqroq ishlashi tekshirildi. Shundan so‘ng mazkur model asosida
foydalanuvchilar uchun qulaylik yaratish maqsadida Veb-sayt ishlab chiqildi. Veb-sayt
orqali abiturentlarning demografik va xulq-atvor ma’lumotlari asosida ularning
imtihonlarda to‘plashi mumkin bo‘lgan balni bashorat qilish imkoni mavjud. Bu esa
abituriyentlarga demografik va xulq-atvori ma'lumotlarini kiritishlari va imtihon
natijalarni taxminiy bilishlari uchun qulay platformani taqdim etadi. Bundan tashqari,
model va veb-sayt boshqa mamlakatlar yoki mintaqalarda foydalanish uchun
moslashtirilishi mumkin.
Qolaversa taxmin qilingan natija asosida, abiturentlarni imkoniyatlariga mos oliy ta’lim
muassasasiga yo‘naltirishga mo‘ljallangan tavsiya tizimini ishlab chiqish mumkin. Umuman
olganda, ushbu tadqiqot oliy ta'lim muassasalariga qabul jarayonini yaxshilash uchun
demografik va xulq-atvor ma'lumotlariga asoslangan yondashuvlardan foydalanish
imkoniyatlarini ta'kidlaydi va abituriyentlarning muvaffaqiyatini bashorat qilishda ANFIS
modeli samaradorligini ko‘rsatadi.
Foydalanilgan adabiyotlar ro‘yxati.
1. R. Mehdi and M. Nachouki, “A neuro-fuzzy model for predicting and analyzing student
graduation performance in computing programs,” Educ Inf Technol (Dordr), pp. 1–30, Aug.
2022, doi: 10.1007/S10639-022-11205-2/FIGURES/8.
2. M. Hanik, M. A. Demirtaş, M. A. Gharsallaoui, and I. Rekik, “Predicting cognitive scores
with graph neural networks through sample selection learning,” Brain Imaging Behav, pp.
1–16, Nov. 2021, doi: 10.1007/S11682-021-00585-7/FIGURES/3.
3. A. Alghamdi, A. Barsheed, H. Almshjary, and H. Alghamdi, “A Machine Learning
Approach for Graduate Admission Prediction,” ACM International Conference Proceeding
Series, pp. 155–158, Mar. 2020, doi: 10.1145/3388818.3393716.
16
4. L. Hatzilygeroudis, A. Karatrantou, and C. Pierrakeas, “PASS: An expert system with
certainty factors for predicting student success,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 3213, pp. 292–298, 2004, doi: 10.1007/978-3-540-30132-
5_43/COVER.
5. S. Walczak and T. Sincich, “A comparative analysis of regression and neural networks
for university admissions,” Inf Sci (N Y), vol. 119, no. 1–2, pp. 1–20, Oct. 1999, doi:
10.1016/S0020-0255(99)00057-2.
6. D. Pamučar, D. Božanić, A. Puška, and D. Marinković, “Application of neuro-fuzzy
system for predicting the success of a company in public procurement,” Decision Making:
Applications in Management and Engineering, vol. 5, no. 1, pp. 135–153, Apr. 2022, doi:
10.31181/DMAME0304042022P.
7. R. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,”
Proceedings of the International Symposium on Micro Machine and Human Science, pp. 39–
43, 1995, doi: 10.1109/MHS.1995.494215.
8. E. H. Mamdani, “APPLICATION OF FUZZY ALGORITHMS FOR CONTROL OF SIMPLE
DYNAMIC PLANT.,” Proceedings of the Institution of Electrical Engineers, vol. 121, no. 12,
pp. 1585–1588, 1974, doi: 10.1049/PIEE.1974.0328/CITE/REFWORKS.
9. H. A. Nefeslioglu, C. Gokceoglu, and H. Sonmez, “A mamdani model to predict the
weighted joint density,” Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes
in Computer Science), vol. 2773 PART 1, pp. 1052–1057, 2003, doi: 10.1007/978-3-540-
45224-9_140/COVER.
10. K. Tanaka and M. Sugeno, “Introduction to Fuzzy Modeling,” Fuzzy Systems, pp. 63–
89, 1998, doi: 10.1007/978-1-4615-5505-6_3.
11. B. B. Muminov, O. Nuraliyevich Bekmirzaev, and M. Al-Khwarizmi, “CLASSIFICATION
AND ANALYSIS OF NETWORK ATTACKS IN THE CATEGORY OF’DENIAL OF SERVICE’
INFORMATION SYSTEM,” CENTRAL ASIAN JOURNAL OF EDUCATION AND COMPUTER
SCIENCES (CAJECS), vol. 1, no. 1, pp. 7–15, Feb. 2022, Accessed: May 09, 2023. [Online].
Available: https://cajecs.com/index.php/cajecs/article/view/v1i11
12. D. K. Sambariya and R. Prasad, “Selection of Membership Functions Based on Fuzzy
Rules to Design an Efficient Power System Stabilizer,” International Journal of Fuzzy
Systems, vol. 19, no. 3, pp. 813–828, Jun. 2017, doi: 10.1007/S40815-016-0197-
6/TABLES/11.
13. J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans
Syst Man Cybern, vol. 23, no. 3, pp. 665–685, 1993, doi: 10.1109/21.256541.
14. B. Haznedar and A. Kalinli, “Training ANFIS structure using simulated annealing
algorithm for dynamic systems identification,” Neurocomputing, vol. 302, pp. 66–74, Aug.
2018, doi: 10.1016/J.NEUCOM.2018.04.006.
15. S. Hirokawa, “Key attribute for predicting student academic performance,” ACM
International Conference Proceeding Series, pp. 308–313, Oct. 2018, doi:
10.1145/3290511.3290576.
16. S. Geisser, “The predictive sample reuse method with applications,” J Am Stat Assoc,
vol. 70, no. 350, pp. 320–328, 1975, doi: 10.1080/01621459.1975.10479865.
17. G. Shmueli, “To Explain or to Predict?,” https://doi.org/10.1214/10-STS330, vol. 25,
no. 3, pp. 289–310, Aug. 2010, doi: 10.1214/10-STS330.
18. M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,”
Journal of the Royal Statistical Society: Series B (Methodological), vol. 36, no. 2, pp. 111–
133, Jan. 1974, doi: 10.1111/J.2517-6161.1974.TB00994.X.
19. F. Mosteller and J. W. Tukey, “Data analysis and regression. A second course in
statistics,”
dars,
1977,
Accessed:
May
01,
2023.
[Online].
Available:
https://ui.adsabs.harvard.edu/abs/1977dars.book.....M/abstract
17
Рудикова Л.В., О некоторых подходах к построению информационных моделей
городов
|