Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet62/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   58   59   60   61   62   63   64   65   ...   81
Bog'liq
Alireza Fasih

9.4
 
Using genetic algorithms for CNN template optimization 
The concept of 
Cellular Neural Networks
(CNN) was introduced by Leon O. Chua and Yang 
[104]. CNN is a computation platform which is mathematically modeled by Equation 9-1 
(9-1) 
where, 
‘TA’
denotes the 3×3 feedback template and 
‘TB’
stands for the 3×3 control 
template. 
‘I’
is a bias value and 
‘y’
is the nonlinear output sigmoid function of each cell. 
‘u’
denotes the input value and 
‘x’
is the state of each cell. The input value is discretized into 
I
y
T
u
T
x
x
A
B
-


 
100 
pixels and is represented in a table of numbers called matrix. The size of this matrix 
depends upon the number of joints in the walker robot. In Equation9-1, the stars stand for 
convolution operations.
The genetic algorithm is a heuristic search technique used in computing to find either 
exact or approximate solutions for optimizing a given problem. The GA is an evolutionary 
algorithm that uses techniques inspired from biology such as inheritance, mutation, 
selection, and crossover. In this paper, this algorithm is used for finding the best templates 
for optimum robots locomotion. The complete structure of the system used for the 
training process is shown in Figure 9-2. This structure consists of six main parts: (1) Initial 
Population; (2) Crossover; (3) Mutation; (4) Fitness Function; (5) Decoding; (6) Cellular 
Neural Network Simulator. In Figure 9-3 the connections between the robot 
actuators/hinges and the CNN outputs are shown. These connections are exploited in the 
control of both robot hinges and actuators. Wave rhythms are generated from the CNN 
processor outputs which can drive the walker robot on a specific path and/or direction 
depending on the high level task each of which consists of many low level tasks. After the 
learning phase, the output waves can drive the robot with a minimum energy and a good 
efficiency. This driving depends upon specific choices of templates values. Each template 
set is a solution for driving the robot by means of (or by performing) some specific low 
level tasks.

Download 3,22 Mb.
1   ...   58   59   60   61   62   63   64   65   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish