• Introduction
  • Figure 9-1: Shows the spatial wave and time domain on a CNN, which connected to the robot actuators
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet60/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   56   57   58   59   60   61   62   63   ...   81
    Bog'liq
    Alireza Fasih

    9.
     
    Cellular Neural Networks for Controlling an Unstructured 
    Robot 
     
    In this chapter the focus lies on the following research question:
     
    “How far can CNN be
    used/involved in an evolutionary computing/control context example?”
     
     
    9.1
     
    Introduction 
    CNN has a great potential in signal processing, and it can generate very complex nonlinear 
    wave and osculation pattern in the output of Cells. Controlling kinematic and inverse-
    kinematic of complex robots with 
    High Degree of Freedom
    (DOF) could be very complex 
    scenario and classical solutions are not able to solve it easily. Therefore evolution of CNN 
    template to generate the optimum wave for driving motor and robot actuators could be an 
    interesting idea for research. In the nature organisms system are evolving by the theory of 
    natural selection. The art is to define a fitness function for evaluating of the performance of 
    robot locomotion. Hence, by evolving the CNN template based on Genetic algorithm and a 
    fitness function we can generate the very complex wave for optimal controlling the robot 
    hinges without involving the robot kinematic equation in controller directly. A two 
    dimensional CNN could be sufficient for evolving spatial wave over the time for controlling 
    the actuators and hinges. Figure 9-1 has shown this connectivity between CNN and robot 
    actuators. 


     
    97 
    Figure 
    9-1: Shows the spatial wave and time domain on a CNN, which connected to the robot 
    actuators 
    A fitness function is a particular type of objective function that quantifies the optimality of 
    a solution. Input data for the fitness function is based on measurements of robot parts 
    orientation, location and displacement. In fitness function we don’t define any behavioral
    locomotion exactly. On the other hand, we define a function that satisfies the target or 
    destination. With this method based on genetic algorithms, an optimum template ensures 
    that the robot can move or act according to our desires. The most important point in this 
    learning method is that we don’t predefine any robot kinematics for movement in the
    fitness function.

    Download 3,22 Mb.
    1   ...   56   57   58   59   60   61   62   63   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish