• Figure 8-1: A simple CNN array architecture
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet56/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   52   53   54   55   56   57   58   59   ...   81
    Bog'liq
    Alireza Fasih

    8.4
     
    System Design and Architecture of CNN 
    This section explains in detail about the CNN, its architecture and advantages. It is followed 
    by the description of the system we have developed and about the OpenCL framework we 
    have used and its advantages for programming on GPU. Analog circuits have played a very 
    important role in the development of modern electronic technology. Even in our digital 
    computer era, analog circuits still dominate such fields as communications, power, 
    automatic control, audio and video electronics because of their real-time signal processing 
    capabilities [104]. CNN technology is both a revolutionary concept and an experimentally 
    proven new computing paradigm. Analogic cellular computers based on CNNs are set to 
    change the way analog signals are processed and are paving the way to an entire new 
    analog computing industry [138]. CNN was proposed by Chua and Yang in 1988 [104]. The 
    CNN is defined as a n-dimensional array of cells that satisfies two properties: (i) most 
    interactions are local within a finite radius r, and (ii) all state variables are continuous 
    valued signals [94].The CNN has M by N processing unit circuit called cells C (i, j) located at 
    site (i, j), i = 1, 2, . . ., M, j = 1, 2, . . ., N [98]. The array of CNN cell structure is as shown in 
    Figure 8-1. 
    Figure 
    8-1: A simple CNN array architecture 
    Each cell of the CNN is made of a linear capacitor, a nonlinear voltage controlled current 
    source and a few resistive linear circuit elements. The dynamic equation of a cell 
    C
    (i, j) in 
    an M×N CNN, given by CHUA and Yang [139] is shown below 


     
    89 
    (8-1)
    C
    = − X + ∑
    (A
    ,
    Y + B
    ,
    U )
    ( , )∈
    ( , )
    + I
    Where the output equation Y
    ij
    can be written as 
    (8-2) 
    𝑌 = 𝑓 𝑋(𝑖, 𝑗) = (|𝑋 + 1| − |𝑋 − 1|)
    The mathematical equation mentioned in Equation 8-1 is representing the model of the 
    Continuous Time CNN (CT-CNN). In the equation, 
    C
    is a linear capacitor and R is a resistor. 
    Y
    kl
    is the output state of each cell. U
    kl 
    is the input of each cell. A
    ij
    and B
    ij
    are the template 
    elements. X
    ij
    represents the initial state and I represent the threshold or bias for each cell. 
    The Equation 8-2 is the output equation of each iteration. This equation gives the 
    functional model for the calculation of each pixel element to the output. This model in not 
    very fast in the real time image processing. In order to overcome the drawbacks of CT-CNN, 
    the concept of Discrete Time CNN (DT-CNN) is developed. The DT-CNN is defined by the 
    difference equations instead of differential equations used in the CNN [140]. The model of 
    DT-CNN is derived from the model of CT-
    CNN using the Euler’s method. The DT
    -CNN can 
    be described with the following equation [140]. 
    (8-3)
    𝑋
    ,
    (𝑡 + 1) ≈ ∑
    𝐴 (𝑖, 𝑗; 𝑘, 𝑙)𝑓 𝑋
    ,
    (𝑡) + ∑
    𝐵 (𝑖, 𝑗; 𝑘, 𝑙)
    ( , )∈ ( , )
    ( , )∈ ( , )
    𝑈
    ,
    + 𝐼
    From Equation 8-3, we can see that X
    i,j
    is the state of the cell C(i, j) and f(X
    k,l
    ) is the output 
    of cell C(k, l) within the neighborhood N
    r(i, j)
    of C(i, j). U
    k,l
    is the input of each cell C(k, l) 
    within N
    r(i, j)
    , and 
    I
    is the bias of cell. A and B are called the feed-back and feed-forward 
    templates of the CNN respectively. 
    CNNs are widely used for real time image processing applications. Though the CNN, as a 
    concept is characterized by a strict locality operation, the large scale digital 
    implementation has been far from trivial [90]. 


     
    90 

    Download 3,22 Mb.
    1   ...   52   53   54   55   56   57   58   59   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish