• Figure 7-9: Real-time output of the system on monitor
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet52/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   48   49   50   51   52   53   54   55   ...   81
    Bog'liq
    Alireza Fasih

    Figure 
    7-9: Real-time output of the system on monitor 
    In the case of morphological operations such as dilation, erosion, opening and closing 
    operation, the CNN model has been found to be much faster, and it is not even possible to 


     
    82 
    implement these operations only by cascading convolution operators and some Boolean 
    arithmetic operations. For the complex algorithms like “skeleton”, CNN has clearly a very
    good potential and it is easy to find a template to extract the image skeleton; see Refs [18, 
    129] [93, 96, 130].
    7.11
     
    Conclusion 
    In this chapter, a new method for CNN emulation on FPGA for real time machine vision 
    applications has been proposed. The system is implemented on Xilinx XtremeDSP kit 3400, 
    which is very flexible for video and image processing applications. The video is tested on 
    DVI and Camera in connection with 1024×768 pixels and 60 fps monochrome for direct 
    convolution and near 24 fps CNN emulation. The maximum frequency of the system is 
    200MHZ. The Computation of pixel operations for convolution method does only take two 
    clock pulses. And for the CNN implementation the number of clock pulses needed for a give 
    processing did depend on the accuracy needed to repeat the DDA iterations. The whole 
    design has been made by ISE 11.2, EDK 11.2 and Impulse CoDeveloper 6.3. The main 
    features of the convolution technique is that we don’t need to access to the ext
    ernal 
    memory and the frame rate is high. That’s why it takes only two clock pulses. For
    implementing complex filters such as nonlinear image processing, CNN-based processing is 
    clearly much better than convolution operations. To achieve the same result by cascading 
    some convolution operators would result is a significantly slower process than using only 
    one CNN operation processing. 

    Download 3,22 Mb.
    1   ...   48   49   50   51   52   53   54   55   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish