• Figure 7-8: Impulse CoDeveloper Design Process Diagram
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet51/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   47   48   49   50   51   52   53   54   ...   81
    Bog'liq
    Alireza Fasih

    Figure 
    7-8: Impulse CoDeveloper Design Process Diagram 
    Imuplse C can generate hardware and software interfaces; depending on the architecture, 
    it can be PLB based or FSL based. We have access to driver and low level code for 
    communication between processor (MicroBlaze/PowerPC), convolution module and CNN 
    modu
    le. We don’t need to store the pixels values of the whole image, and just after
    C Language 
    Application 
    Generate 
    FPGA 
    Hardware 
    Generate 
    Hardware 
    Interface 
    Generate 
    Software 
    Interface 
    HDL Files 
    C Soft Lib 
    FPGA Fabric 
    MicroBlaze 
    CPU 


     
    81 
    convolution calculations for every 3 rows, we can send it to the video output. In CNN, we 
    have to keep those pixels values in a buffer for the next n iterations. The number of n is 
    depending on the accuracy and on the DDA approximation. For this work we have used a 
    32bit MicroBlaze CPU for a combination of both hardware and software; hardware 
    convolution modules must connect to the memory and data path according to the Figure 7-
    1 architecture. All the parameters and data can be transmitted between modules and 
    memory, which is based on FIFO stream buffers and 
    Processor Local Bus
    (PLB) technique; 
    see Refs [127, 128].
    7.10
     
    Direct convolution vs. CNN 

     performance comparison 
    We have found by experience that in our design image smoothing operators, whether 
    linear or non-linear, such as uniform filter, median filter, Gaussian filter and so on, which is 
    easy to model by a direct convolution, are faster than a CNN based processing for the same.
    The results of first order and second order derivatives for finding edging in direct 
    convolution was also faster than CNN implementation. The direct convolution method 
    needed only two clock pulses for each pixel, while CNN needed 10 clocks (it depends on the 
    number of DDA iterations). 

    Download 3,22 Mb.
    1   ...   47   48   49   50   51   52   53   54   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish