• Figure 9-2: System Architecture Diagram
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet63/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   59   60   61   62   63   64   65   66   ...   81
    Bog'liq
    Alireza Fasih

    Figure 
    9-2: System Architecture Diagram
     


     
    101 
    For optimizing these solutions, the templates must be coded as chromosomes as shown 
    in Figure 9-4. In the initialization phase, Figure 9-4 generates many random chromosomes 
    (in this case CNN templates), each being a solution for driving the robot. In fact, each 
    chromosome is a CNN template that is reshaped in a one dimensional array. According to 
    Figure 9-4, each chromosome does contain a feedback template, a control template and a 
    bias value. Various methods exist (in genetic algorithms) for coding data as chromosomes. 
    This paper implements two different methods for coding and generating chromosomes. 
    The first method is based on the IEEE-754 scheme which is a floating point technique. In 
    this technique, each value must be converted to binary format according to the IEEE-754 
    floating point technique. The IEEE floating point format consists of three main parts: the 
    sign, the exponent, and the mantissa [147]. The number of bits for each field is shown in 
    the table below. 
    Table 9-1: Single Precision - IEEE Floating Point Format Structure 
    Sign 
    Exponent 
    Mantissa 
    1 bit 
    8 bit 
    23 bit 
    With the floating data types mentioned in Table 1, it is possible to store values between 
    the ranges
    38
    45
    10
    4
    .
    3
    ,
    10
    5
    .
    1
    . The use of this method as a gene coder requires the 
    definition of a mask for some bits. Otherwise, the random chromosome generator will 
    generate values out of the range
    V
    V
    5
    ,
    5
    . This condition is of high importance as a 
    hardware implementation (using TTL devices) of this algorithm is under consideration. In 
    the second method impl
    emented, a “real” data type value is used as a chromosome coding.
    For this step, a random function generates a value in the acceptable range. The 
    implementation of this method is easier than of the first method. The results from the two 
    methods are compared and a very good similarity is obtained between them. Nevertheless, 
    the convergence time in binary coding was 10 percent faster. One particular important 
    part of this algorithm is the design of the fitness function. This function or cost function 
    defines/fixes indirectly the robot behavior [148]. This function is a particular type of 
    objective function that quantifies the optimality of a solution in Genetic Algorithms. The 
    input data for the fitness function are based 
    on measurements of robots’ parts orientation,


     
    102 
    location and displacement. In the fitness function we don’t define any behavioral
    locomotion exactly, like a robot kinematics. On the other hand, we define a function that 
    satisfies the target or destination without any details. 

    Download 3,22 Mb.
    1   ...   59   60   61   62   63   64   65   66   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish