• Figure 9-7: Wave generated for lateral undulation locomotion Figure 9-6: Snake robot lateral undulation locomotion X
  • Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




    Download 3,22 Mb.
    Pdf ko'rish
    bet66/81
    Sana16.05.2024
    Hajmi3,22 Mb.
    #238917
    1   ...   62   63   64   65   66   67   68   69   ...   81
    Bog'liq
    Alireza Fasih


    part of the snake robot and the 
    ‘x’
    axis. RMS denotes 
    the roots mean square error between the robot part’s position and the
    ‘x’
    axis. 
    X
    L1
    stands 
    for the forward distance towards the 
    ‘x’
    axis.
    DIST
    AVG
    RMS
    Fitness
    1
    7
    1
    2
    i
    i
    L
    AVG
    RMS
    7
    7
    1
    i
    i
    L
    AVG
    1
    L
    X
    DIST


     
    106 
    In the lateral undulation locomotion, this term of the fitness-function must be close to zero. 
    This fitness-
    function defines the “snake robot” behavior for lateral undulation locomotion
    tasks. The first term 
    (RMS)
    in the fitness function shows that the robot must keep itself in-
    line by moving parallel to the 
    ‘x’
    axis. The second term 
    (AVG)
    shows that the robot must 
    escape from the 
    ‘x’
    axis and the 3rd term 
    (DIST)
    in the fitness function shows that the 
    robot usually don’t move in the frontal direction.
    (9-3)
    Figure 
    9-7: Wave generated for lateral undulation 
    locomotion 
    Figure 
    9-6: Snake robot lateral undulation locomotion 


    29
    .
    3
    ,
    06
    .
    3
    27
    .
    4
    6
    .
    0
    09
    .
    1
    45
    .
    0
    51
    .
    0
    07
    .
    1
    39
    .
    2
    46
    .
    3
    ,
    17
    .
    4
    18
    .
    2
    33
    .
    4
    89
    .
    4
    85
    .
    2
    44
    .
    3
    79
    .
    1
    01
    .
    0
    8
    .
    0
    I
    Tb
    Ta


     
    107 
    After a first generation of 100 chromosomes, the robot learns to move in the lateral 
    undulation with a corresponding set of CNN templates, which are obtained by the 
    evolution method. These templates are shown in Equation 9-3. A task manager in the high 
    level can select a best template for performing a specific task by the robot. On the other 
    hand, each set of templates corresponds to a specific robot movement/locomotion. In 
    another evaluation we define a fitness function according to Equation 9-4. This function is 
    defined for robot rectilinear locomotion with a minimum sidle. According to this equation, 
    each term must be close to zero. The first term 
    (RMS)
    shows that the robot must have a 
    minimum deviance to the 
    ‘x’
    axis. The second term 
    (AVG)
    shows that the robot should not 
    be away from this axis. The last term 
    (DIST)
    shows that the robot must crawl on the 
    ‘x’
    axis. 
    After each breed, a new chromosome is added to the chromosome population. After 
    checking of new chromosomes by the fitness function, they will be sorted in a population 
    list ordered by the best fitness. According to the evolution theory, after many generations, 
    some chromosomes (“children”) can inherit good properties from others (“parents”) which
    are best and fit chromosomes.
    After nearly 790 chromosome generations the robot would have learned to move with 
    the highest speed. With Equation 9-5, the CNN processor can generate a hinge wave 
    according to Figure 9-8. This wave is optimum for the robot rectilinear locomotion using 
    an evolution algorithm. Figure 9-9 shows the robot during the simulation in rectilinear 
    locomotion. Figure 9-10 is the plot of the time evolution of the fitness function obtained 
    after 790 generation of chromosomes; the robot has learned the best movement and 
    locomotion. The extension of this architecture or learning method to another kind of robot 
    is possible. By connecting the CNN outputs to unknown/arbitrary robot actuators, the 
    robot can learn any locomotion. Due to the high capacity of CNN, we can connect the CNN 
    output to the robot hinges actuators by any arrangement and structure. The results are 
    same although both learning and optimization times might change. 
    (9-4) 
    DIST
    AVG
    RMS
    Fitness
    1


     
    108 
    (9-5) 

    Download 3,22 Mb.
    1   ...   62   63   64   65   66   67   68   69   ...   81




    Download 3,22 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

    Download 3,22 Mb.
    Pdf ko'rish