Educational Research in Universal Sciences issn: 181-3515 volume




Download 0,56 Mb.
Pdf ko'rish
bet3/8
Sana08.01.2024
Hajmi0,56 Mb.
#131903
1   2   3   4   5   6   7   8
Bog'liq
4 Educational Research in Universal Sciences ISSN 2181-3515 VOLUME 2 SPECIAL ISSUE 12 2023
01.5, kicik biznes va xususiy tadbirkorning aholini ish bilan taminlash va yangi ish o\'rinlari yaratishdagi o\'rni, Amaliyot kundaligi - 60111800, Mavzu Plezioxron ierarxiya tiimlari (pdh), Razryadlı saralash, tez saralash algoritmlari.Algoritmlar va berilganlar strukturasi, Узбекистон Республикаси2023, MAĠLIWMATNAMA, xiywaǵo Министерство высшего и среднего специального образования, Sonata, klark, 20 tema, Лекция 1, test, iyod yakuniy oxirgi, Kantrakt Shartnoma
117
 
Kalit so‘zlar: geterotuzilish, nanofaza, tarmoqli boʻshliq, nanotuzilish, 
nanokristal qatlam, ion implantatsiyasi, yuza tuzilishi, silisid, oʻtish qatlami. 
At present, much attention is paid to the study of the optical and electronic 
properties of semiconductors with nanophases and nanofilms on the surface layers. Of 
particular interest are studies related to the change in the properties of silicon with a 
decrease in its size to several nanometers, as well as studies aimed at changing the 
properties of Si nanofilms under various influences (atomic adsorption, ion and 
electron bombardment, oxidation). It was shown in [1–3] that an increase in porosity 
and, therefore, a decrease in the size and change in the shape of silicon nanophases 
leads to an increase in the light absorption edge towards higher energies, which is 
explained by an increase in the band gap Eg. The largest increase in Eg (up to 1.7 eV) 
is observed when the size of Si nanocrystalline phases is ≤ 3–4 nm [2, 5]. An increase 
in Eg to 1.9 eV is also observed in the case of the formation of thin amorphous silicon 
films [5]. Therefore, the amorphous silicon/nanocrystalline silicon system is a 
promising material for the development of high efficiency solar cells [6-8].
It is shown that the band gap Е
g
of nanoscale phases of the MeSi
2
/Si and GaMeAs 
types is noticeably larger than Е
g
of bulk MeSi
2
and GaMeAs films. The sizes of 
nanostructures at which quantum-size effects begin to appear are estimated. When 
monatomic single-crystal semiconductors (Si, Ge) are bombarded under conditions of 
ultrahigh vacuum with ions of inert gases, the composition of ion-bombarded layers 
practically does not change, and all changes in properties are determined only by 
disordering of the near-surface layers. However, the influence of the formation of 
disordered phases and layers on the band structure has not yet been practically studied, 
and the electrophysical and optical properties of Si have been practically not studied. 
The results of such studies are of practical and scientific interest. 
Therefore, the main purpose of this work is to study the effect of the formation of 
nanosized phases in the near-surface region of Si (111) single crystals upon 
bombardment with Ar
+
and Ni
+
ions with E
0
= 0.5 – 2 keV, energy band parameters, 
electrical and optical properties. 
Single-crystal samples of Si (111) with dimensions of 10100.5 mm were used 
as the object of study. Thermal treatment, bombardment with Ar+ and Ni+ ions and 
studies using the methods of Auger electron spectroscopy (OES), ultraviolet 
photoelectron spectroscopy (UVES), measurements of the energy and quantum yields 
of photoelectrons were carried out in the same experimental device at vacuum Р  10
-
7
Pa. The energy of Ar
+
and Ni
+
ions varied within E
0
= 0.5 – 2 keV, and their dose was 
D = 10
14
– 10
17
cm
-2
. Before ion bombardment, the Si surface was degassed at T = 1200 
K for 4–5 hours in combination with short-term heating up to T = 1500 K at a vacuum 



Download 0,56 Mb.
1   2   3   4   5   6   7   8




Download 0,56 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Educational Research in Universal Sciences issn: 181-3515 volume

Download 0,56 Mb.
Pdf ko'rish