|
I.2 To‘plamlarning berilish usullari. Teng to‘plamlar. To‘plam osti. Universal to‘plam. Eyler- Venn diagrammalri
|
bet | 4/67 | Sana | 05.01.2024 | Hajmi | 1,8 Mb. | | #130621 |
Bog'liq BOSHLANG’ICH MATEMATIKA KURSI NAZARIYASI OQUV QOLLANMA 2020тайёрI.2 To‘plamlarning berilish usullari. Teng to‘plamlar. To‘plam osti. Universal to‘plam. Eyler- Venn diagrammalri.
To‘plamlarning berilish usullari .To‘plam asosan ikki usulda beriladi:
1) Elementlarni bevosita keltirish, yoki sanash yordamida beriladi. Agar a, b,c – A to‘plamning turli ob'ektlar belgilari bo‘lsa, A to‘plam quyidagicha yoziladi: A={a,b,c} va quyidagicha o‘qiladi "A to‘plam a,b,c elementlardan iborat".
Bu usul chekli to‘plamlarda qo‘llaniladi, lekin bu shart bilan birga elementlar soni to‘plamda ko‘p bo‘lmasligi kerak.
2) Elementlarning xarakteristik xossasiga qarab beriladi. Masalan, A natural sonlar to‘plami 6 dan kichik. Bu to‘plam ikkinchi usulda berilgan : hamma A to‘plam elementlarining xarakteristik xossasi ko‘rsatilgan, ya'ni natural son bo‘lish va 6 sonidan kichik bo‘lishi asosida.
A to‘plam elementlarini 1-usulda quyidagicha yozish mumkin: A={ 1,2,3,4,5 }
To‘plam elementining ayrim xarakteristik xossasi ko‘rsatilgan bo‘lsa ,uni quyidagicha ifodalaymiz: qavsda element belgisi yoziladi, keyin vertikal chiziq o‘tkaziladi, so‘ng to‘plam elementlarining xossasi yoziladi. Masalan: 6 dan kichik bo‘lgan A natural sonlar to‘plami quyidagicha yoziladi: A={x / x N, x<6} bu erda N- natural sonlar to‘plami. To‘plam cheksiz bo‘lganda ikkinchi usuldan foydalaniladi, Masalan : markazi 0 nuqtada r radiusli aylanada yotuvchi M nuqtalarning A to‘plami quyidagicha yozish mumkin:
A={M / | OM| =r}
Teng to‘plamlar. Ta'rif : Agar ikki to‘plam bir xil elementlardan iborat bo‘lsa, bunday to‘plamlarga teng to‘plamlar deyiladi. Masalan: A={3,5,7,9} va B={7,3,9,5} to‘plamlar bir xil elementlardan iborat, shuning uchun ular teng to‘plamlardir .
Teng to‘plamlar tushunchasi bilan quyidagi hol bog'langan: bitta to‘plamning o‘zi turli xarakterli xossalari orqali berilishi mumkin. Masalan : A={1,2,3,4,5} to‘plamni x<6 tengsizlikning echimi bo‘ladigan natural sonlar to‘plami ko‘rinishida , 1 va 5 sonlari orasida yotuvchi barcha butun sonlar ko‘rinishida ham berilishi mumkin.
Misollar: 1) A={1,2,3,4}
B={ }
A va B to‘plamlar teng, ya'ni A=B
2) C={0,1,2,3,4,5,6,7,8,9},
D - bir xonali sonlar to‘plami, C=D
To‘plamlarning tengligi quyidagi uch xossani qanoatlantiradi :
1. Har qanday A to‘plam uchun , A=A o‘rinlidir ( refleksivlik)
2. Ixtiyoriy ikkita A va B to‘plamlar uchun , agar A=B bo‘lsa , u holda B=A (simmetriklik )
3. Ixtiyoriy uchta A,B,C to‘plamlar uchun , agar A=B va B=C bo‘lsa , u holda A=C bo‘ladi (tranzitivlik ).
6>
|
| |