|
t =o gipertekislikda yotuvchi nuqtasidagi qiymati bilan ustma-ust tushadi, Lekin bu nuqtada (2.1.6) shartga asosan u = 0. Bundan nuqta D
|
bet | 6/8 | Sana | 10.01.2024 | Hajmi | 0,63 Mb. | | #133684 |
Bog'liq Maxmudov.ABu sahifa navigatsiya:
- Izoh.
t =o gipertekislikda yotuvchi nuqtasidagi qiymati bilan ustma-ust tushadi, Lekin bu nuqtada (2.1.6) shartga asosan u = 0. Bundan nuqta D sohaning ixtiyoriy nuqtasi bo’lgani uchun, bo’ladi.
Shu bilan to’lqin tenglamasi uchun Koshi masalasi yechimining
yagonaligi isbot bo’ldi.
Bu yagonalik t < 0 bo’lgan holda ham o’z kuchini saqlaydi, ya’ni D soha shar va yasovchilari Ot o’q bilan – 45 ° burchak tashkil qilib, t < 0 yarim fazoda yotuvchi xarakteristik konus bilan chegaralangan bo’lsa ham yechim bu sohada birdan-bir aniqlanadi.
funksiya (2.1.1) tenglamaga qo’yilgan Koshi masalasining yechimi bo’lib, tenglamaning o’ng tomoni tayinlangan funksiya bo’lsin.
Isbotlangan teoremadan shunday narsa kelib chikadiki, funksiyaning ixtiyoriy nuqtadagi qiymati boshlang’ich funksiyalarning faqat shardagi qiymatlari orqali aniqlanadi.
Bu shar nuqta uchun bog’iqlik sohasi deyiladi.
Agar bo’lsa, nuqta uchun botiqlik sohasi shardan iborat bo’ladi.
Izoh. U va lar qiymatlarining sharda berilishi, yechimning asosga ega bo’lgan, yasovchilari Ot o’q, bilan ±45 ° burchak tashkil qiluvchi va o’qi Ot ga parallel bo’lgan konuslardan tashqarida
yotuvchi hech qanday A nuqtada aniqlamaydi.
Buni isbotlash uchun shunday yechim mavjud bo’lib, lar sharda nolga teng bo’lsa ham bo’lishini ko’rsatish yetarlidir.
ixtiyoriy ikki marta differensiallanuvchi funksiya bo’lib,
(2.1.8)
bo’lsa,
(2.1.9)
funksiya (2.1.5) tenglamani qanoatlantiradi.
Haqiqattan,
Bundan darhol, (2.1.8) shartga asosan
(2.1.9) funksiya har qanday
(2.1.10)
gipertekislikda o’zgarmas qiymatga ega bo’lib, (2.1.10) gipertekisliklarning har biri Ot o’q bilan 45° burchak tashkil qiladi. O’zgarmas sonlarni shunday tanlab olamizki, (2.1.10) gipertekisliklar oilasining A nuqtadan o’tadigan gipertekisligi sharni kesib o’tmasin. Bundan so’ng, funksiyani shunday tanlab olish mumkinki. funksiya A nuqtada noldan farqli bo’lib, sharda nolga teng bo’lsin. U holda
izlangan yechim bo’ladi.
Furye almashtirishidan foydalanib oshkor ko’rinishidagi yechimini topamiz. Keyingi to’lqin tenglamasi berilgan bo’lin (bir jinsli yoki bir jinsli emas)
va
Dastlab bir jinsli tenglama yechimini topamiz. Bu uchun (2.1.10) ga quyidagi tenglamani qaraymiz.
Ushbu tenglama quyidagi boshlang’ich tenglama bilan olingan
Bu tenglamaning yechimi quyidagi ko’rinishga ega:
t ni parametr sifatida qaraymiz. Quyidagi belgilash kiritamiz.
3. Issiqlik o’tkazuvchanlik tenglamasining fundamental yechimi.
Quyidagi Koshi masalasini qarab chiqaylik:
sohada shunday chegaralangan funksiyani topingki, u issiqlik o‘tkazuvchanlik tenglamasini
(2.2.1)
va quyidagi boshlang‘ich shartni qanoatlantirsin:
. (2.2.2)
Ushbu masalaning trivial bo‘lmagan yechimini quyidagi ko‘paytma ko‘rinishida qidiramiz:
(2.2.3)
(2.2.3) ni (2.2.1) ga keltirib qo‘yib:
ifodani olamiz.
Bu yerda - ajratish parametri. Bundan:
, (2.2.4)
, (2.2.5)
(2.2.4) va (2.2.5) ni yechib, (2.2.1) tenglamaning quyidagi ko‘rinishdagi xususiy yechimlarini topamiz;
, (2.2.6)
Bu funksiyalar chegaralanganlik shartini qanoatlantiradi. Bu yerda - ixtiyoriy haqiqiy son, shuning uchun biz “+” ishorasini olib, quyidagi funksiyani hosil qilamiz:
(2.2.7)
t=0 da boshlang’ich shartning bajarilishini talab qilamiz:
(2.2.8)
Endi Furye integralini teskari almashtirish formulasidan foydalanamiz:
(2.2.9)
(2.2.9) ni (2.2.7) ga qo‘yib va integrallash tartibini o’zgartirib quyidagi ifodani olamiz:
(2.2.10)
(2.2.10) ifodadagi ichki integral
(2.2.11)
(2.2.11) ni (2.2.10) ga qo‘yib qidirilayotgan yechimning integral ko‘rinishini olamiz:
(2.2.12)
bu yerda
. (2.2.13)
(2.2.13) formula bilan aniqlanadigan funksiyani ko‘pincha issiqlik o‘tkazuvchanlik tenglamasining fundamental yechimi ham deydilar.
Ushbu funksiya
1) issiqlik o‘tkazuvchanlik tenglamasini qanoatlantiradi. (tekshiramiz)
2) Har qanday va t>0 o‘zgaruvchilar uchun
(2.2.12) fomulaga Puasson integrali yoki Puasson formulasi ham deyiladi.
Bir jinsli bo‘lmagan tenglama
va quyidagi nol boshlang‘ich shartni
.
qanoatlantiradigan yechim quyidagi formula bilan aniqlanadi:
(2.2.14)
|
|
Bosh sahifa
Aloqalar
Bosh sahifa
t =o gipertekislikda yotuvchi nuqtasidagi qiymati bilan ustma-ust tushadi, Lekin bu nuqtada (2.1.6) shartga asosan u = 0. Bundan nuqta D
|