SPUTTERING OF IONIC WATER CLUSTERS




Download 6,64 Mb.
Pdf ko'rish
bet201/312
Sana22.05.2024
Hajmi6,64 Mb.
#249488
1   ...   197   198   199   200   201   202   203   204   ...   312
Bog'liq
3 tom

396
SPUTTERING OF IONIC WATER CLUSTERS
K.Otabaeva, D.Xudaynazarova
 
 Urganch State University, H.Olimjon str.14, Urganch,Uzbekistan 
Secondary ion mass spectrometry (SIMS) is a wonderful technique for 
providing mass spectrometric information of molecules on surfaces [1]. 
Theoretical studies of the keV bombardment of organic films on metallic 
surfaces have contributed to our understanding of the mechanisms governing 
these processes. Many experiments of keV bombardment, however, are 
performed both the thick and thin targets [2-4]. In this paper, we present 
molecular dynamics (MD) simulations aimed at obtaining such a microscopic 
picture and mass spectrum of sputtering clusters. Because of the importance of 
solvent H
2
O in many of the experiments, we have chosen it as our system. The 
interaction potentials available for MD simulations of H
2
O are sufficiently 
reliable such that a quantitative analysis of the simulation results can be directly 
related to the parameters of water. From the variety of substrate materials used 
in different experiments, we have chosen to perform our simulations using Au. 
This substance is chosen to match preliminary experiments with the selective 
killing of cells by inserted Au nanoparticles and because of the availability of 
good interaction potentials for gold. Below we give our choices for the 
interaction potentials for the H
2
O-H
2
O, Au-Au, and Au-H
2
O components of the 
system. The interaction potential employed to describe the H
2
O-H
2
O interaction 
is the simple-point-charge (SPC) water potential developed by Berendsen et al. 
This potential has been used extensively to study the properties of H
2
O as a 
solid. It has been shown that the SPC potential is able to reproduce many of the 
properties of bulk H
2
O. The Au-Au interactions are represented by the 
MD/Monte Carlo corrected effective medium (MD/MC-CEM) potential 
function for fcc metals. For metal- water systems has been developed a potential 
by Spohr. The Spohr potential consist a Morse function combined with a 
corrugation term defining various surface sites for the oxygen-surface 
interaction and a repulsive term for the hydrogen –surface interaction. For our 
calculation we used modified Spohr function.


Fundamental fanlarni rivojlantirish istiqbollari
Международная научно-техническая конференция «Практическое применение технических и 
цифровых технологий и их инновационных решений», ТАТУФФ, Фергана, 4 мая 2023 г. 
397
This ion-water interaction results in re-orientation of water dipoles in the 
vicinity of the ion, thus disrupting the hydrogen bond network. Consequently, 
the local structure can almost be characterized as a pre-formed ion with the 
weak bonding to the remaining liquid forms. 
When on the surface are present atoms as Na, K and Li, they form with 
analyte by molecules quasi- ions. Imaging of MALDI samples shows that the 
position of analyte molecules and alkali ions highly correlated. The information 
of alkali attached ions is additionally dependent on the chemical structure of 
anylite molecule. We have chosen 4 layers of water with atom Na. This system 
equilibrated 20 ps. The first case when atom Na is on the surface, and the second 
one between layers 2-3. The computational results show that on the mass 
spectrum a few intensive peaks are observed. At the mass spectrum are observed 
high intensive peak corresponds to molecule H
2
O. In the mass spectrum also 
observed peaks which corresponded to the water clusters and Au atoms. The 
water clusters are consists 2ionic water clusters. This is a case when ions Na+ located on the top of water 
molecules which are shown in fig.2a. In this cluster Na ions formed bonds with 
H atoms. And large cluster are consists 32-45 water molecules. Our results 
shows that the preferred orientation of water molecules around a central cation, 
however, is similar to the orientation around a central water molecule, i.e., the 
cation in water does not introduce a large perturbation and the hydrogen bond 
network retains its structural identity near the cation. These results are 
interesting for mass spectrometry of molecules, study of surfaces and biological 
molecules. 
References
1.B.J.Garrison, A.D.Delcorte, K.D.Krantzman.Acc.Chem.Res.33(2000) 
69. 
2. S.J.Stuart, A.B.Tutein, J.A.Harrison. J.Chem.Phys.112(2000) 6472. 
3. B.J.Garrison, D.Srivastava, P.B.S.Kodali. Modelling of Surface 
Processes as Exemplified by Hydrocarbon Reactions. Chem. Rev. 
1996, 96, 1327-1341. 
4. B.J.Garrison,D.Srivastava. Potential Energy Surfaces for Chemical 
Reactions at Solid Surfaces. Annu. Rev. Phys. Chem. 1995, 46, 373-
394. 


Песпективы развития фундаментальных наук 
Международная научно-техническая конференция «Практическое применение технических и 
цифровых технологий и их инновационных решений», ТАТУФФ, Фергана, 4 мая 2023 г. 

Download 6,64 Mb.
1   ...   197   198   199   200   201   202   203   204   ...   312




Download 6,64 Mb.
Pdf ko'rish