• 2 qatlamli neyron tarmoq
  • Sun’iy intellekt va neyron tarmoqlari”fanidan sun’iy neyron tarmoqlari modeli




    Download 1,12 Mb.
    bet12/13
    Sana08.10.2024
    Hajmi1,12 Mb.
    #274151
    1   ...   5   6   7   8   9   10   11   12   13
    Bog'liq
    Mustaqil ish

    Foydalanilgan internet saytlari.

      1. https://en.wikipedia.org/wiki/Artificial_neural_network

      2. https://www.geeksforgeeks.org/implementing-models-of-artificial-neural-network/

      3. https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6#106c

      4. https://www.ibm.com/cloud/learn/neural-networks

      5. https://medium.com/analytics-vidhya/artificial-neural-networks-an-intuitive-approach-part-1-890efac210f0

      6. https://www.mygreatlearning.com/blog/types-of-neural-networks/

      7. https://towardsdatascience.com/a-journey-through-neural-networks-part-1-artificial-neural-network-and-perceptron-e970614b9cc7

      8. https://viso.ai/deep-learning/artificial-neural-network/

      9. https://medium.com/datasciencearth/basic-structure-of-artificial-neural-networks-9aef29df9d

      10. https://www.geeksforgeeks.org/introduction-to-artificial-neutral-networks/

      11. https://www.javatpoint.com/artificial-neural-network

      12. https://brilliant.org/wiki/artificial-neural-network/

      13. https://natureofcode.com/book/chapter-10-neural-networks/



    Ilova

    2 qatlamli neyron tarmoq:


    import numpy as np

    # sigmoid function


    def nonlin(x,deriv=False):
    if(deriv==True):
    return x*(1-x)
    return 1/(1+np.exp(-x))
    # input dataset
    X = np.array([ [0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1] ])
    # output dataset
    y = np.array([[0,0,1,1]]).T

    # seed random numbers to make calculation


    # deterministic (just a good practice)
    np.random.seed(1)

    # initialize weights randomly with mean 0


    syn0 = 2*np.random.random((3,1)) - 1

    for iter in xrange(10000):


    # forward propagation


    l0 = X
    l1 = nonlin(np.dot(l0,syn0))

    # how much did we miss?


    l1_error = y - l1

    # multiply how much we missed by the


    # slope of the sigmoid at the values in l1
    l1_delta = l1_error * nonlin(l1,True)

    # update weights


    syn0 += np.dot(l0.T,l1_delta)

    print "Output After Training:"


    print l1
    Treningdan keyingi natijalar:
    [[ 0.00966449]
    [0,00786506]
    [0.99358898]
    [0.99211957]]




    Download 1,12 Mb.
    1   ...   5   6   7   8   9   10   11   12   13




    Download 1,12 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Sun’iy intellekt va neyron tarmoqlari”fanidan sun’iy neyron tarmoqlari modeli

    Download 1,12 Mb.