Energia, impulzus, impulzusmomentum




Download 3.04 Mb.
bet7/10
Sana24.03.2017
Hajmi3.04 Mb.
#2074
1   2   3   4   5   6   7   8   9   10
6. 6 Energia, impulzus, impulzusmomentum

A teljes Maxwell-egyenletrendszer:

Az első egyenletet E -vel, a harmadikat H -val skalárisan szorozzuk, a kapottakat összeadjuk, és az egyenlet mindkét oldalát egy tetszőleges térfogatra integráljuk:

Felhasználtuk az E rotH H rotE div ( azonosságot, és feltételeztük, hogy D E, B H, azaz a közeg lineáris. A jobb oldal második tagját a Gauss-tétel segítségével átalakítottuk.

Az a feladat, hogy értelmezzük ezt az egyenletet. Vizsgáljuk először a jobb oldal első tagját. Az áramsűrűséget felbontjuk vezetési és konvektív részre:

, hozzáadtunk és levontunk -t, hogy alkalmazhassuk az Ohm-törvényt.

a konvektív áramot létrehozó töltéseken egységnyi idő alatt végzett munka.

a (lineáris) vezetőben egységnyi idő alatt fejlődő Joule-hő.

az áramforrásból az elektromágneses térbe egységnyi idő alatt betáplált energia.

Tegyük fel, hogy a teljes végtelen térfogatot vizsgáljuk, és csak szabadon mozgó töltések vannak a végesben. E és H a távolság négyzetével fordított arányban csökken, az f tagban az integrálási felület a távolság négyzetével arányosan nő, ezért a felületi integrál a végtelenben eltűnik. A töltéseken végzett munka, azok mozgási energiáját növeli, ez csak valamilyen más energia rovására történhet.

Ezek alapján az mennyiséget az elektromágneses tér energiasűrűségének tekinthetjük, az elektromágneses tér energiájának egységnyi

idő alatti megváltozása a kiválasztott térfogatban. Amikor pl. egy vezetőben Joule-hő fejlődik, akkor az elektromágneses tér energiájának kell csökkennie. Ha a térfogatban sem szabad

töltések, sem vezetők nincsenek, akkor ebben csak úgy változhat az energia, hogy határfelületén energia áramlik ki vagy be. Ezért a jobb oldal második tagja, f az integrálási térfogat felületén egységnyi idő alatt kiáramló energia, S energia/felület/idő dimenziójú mennyiség, az energiaáramsűrűség vektora, más néven Poynting-vektor.

Ha a Maxwell-egyenletrendszer

alakjából indultunk volna ki, akkor a fentiekhez nagyon hasonlóan arra jutottunk volna, hogy

Az eltérés oka az, hogy j a teljes áramsűrűség, tartalmazza a polarizációs és a mágneses áramsűrűséget is. Utóbbira nem igaz az Ohm-törvény, ezért ez a levezetés csak vákuumban érvényes. Olyan közegek esetén, amelyekre nem teljesülnek a D E, B H összefüggések, a tárgyalás jóval bonyolultabb, ezzel nem foglalkozunk.

Átalakítjuk az elektrosztatikus tér energiáját megadó összefüggést. A kiválasztott térfogatban legyen térfogati töltés és egy vezető, rajta felületi töltés. Az integrálási térfogatot az külső és a vezetőt körülvevő belső felület határolja.

Felhasználunk vektoranalitikai azonosságot, a Gauss-tételt, a Poisson-egyenletet és azt, hogy E grad.

Az külső határfelületet kitoljuk a végtelenbe, az belsőt ráhúzzuk a vezető felszínére. Amikor , akkor szerint, grad szerint tart 0-hoz (a töltések a végesben vannak), a határfelület szerint tart -hez, így a külső felület járuléka a felületi integrálhoz 0-hoz tart. A vezető felületén grad (2 előjel van, az egyik az E grad egyenlőségben, a másik ott, hogy a Gauss-tétel szerint a felületi integrálban f a térfogatból kifelé mutat, a vezető felületén az elektromos térerősségnek a vezetőből kifelé mutató normális komponensével egyenlő). A végeredmény:

Ha csak ponttöltések vannak jelen, akkor



az járulékot, egyetlen töltés ún. (végtelen) sajátenergiáját elhagytuk. Érdemes megemlíteni, hogy az energiának ebből a kifejezéséből is ki lehet indulni, átalakításokkal a különböző töltéseloszlásokra jellemző energiaképletek levezethetőek. A

fenti megkapható úgy, hogy meghatározzuk, mekkora munkát végzünk, ha a töltést a végtelenből behozzuk a töltéstől távolságra lévő pontba.

Egy kondenzátor energiája, , a kondenzátor töltése, a fegyverzetek potenciálkülönbsége.

Hasonlóképpen átalakíthatjuk az áram által keltett mágneses tér energiáját,

Egy áramhurok esetén , L az előző pontban bevezetett önindukciós együttható.

Az egységnyi térfogatban lévő töltésekre ható erő (erősűrűség): , a töltésrendszer mechanikai impulzusának időegység alatti megváltozása: . A jobb oldalra f-et beírva, a korábbinál kissé bonyolultabb matematikai átalakítással a következő eredményre juthatunk:

Itt a Maxwell-féle feszültségtenzor. Előfordulhat, hogy a térfogat határfelületén , így az elektromágneses térnek impulzust kell tulajdonítanunk. Vákuumban , az impulzussűrűség, a tenzor pedig az impulzusáramsűrűség. Ez azért tenzor, mert két irányt kell megjelölnie, az egyik az impulzus iránya, a másik az impulzus áramlásáé. (Az energia skalár, ezért az energiaáramsűrűség vektor.)

Az elektromágneses tér impulzusának bizonyítéka a fénynyomás (Lebegyev-kísérlet). Egy teljesen tükröző felületre a felület normálisával szöget bezáró fénysugár esik. A tükröt felületére merőleges irányban időegység alatt impulzus éri ( az alapú, magasságú hasáb térfogata, időegység alatt az ebben lévő impulzus jut el a felületre). A nyomás az időegység alatti merőleges irányú impulzusváltozás és a felület hányadosa, , amit a kísérleti tapasztalat igazol.

A mechanikai impulzusmomentum ismeretében természetesnek tűnik, és belátható, hogy vákuumban az elektromágneses tér impulzusmomentum sűrűsége . Ezt a következő kísérlettel lehet alátámasztani. Feltöltött hengerkondenzátor fonálon lóg függőleges irányú mágneses térben. A kondenzátorban sugár irányú elektromos tér van, az impulzusmomentum így tengely irányú. Ha kikapcsoljuk a mágneses teret, a kondenzátor forgásba jön, az elektromágneses tér impulzusmomentuma mechanikai impulzusmomentummá alakul át.



Download 3.04 Mb.
1   2   3   4   5   6   7   8   9   10




Download 3.04 Mb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Energia, impulzus, impulzusmomentum

Download 3.04 Mb.