|
I bob. Funksional ketma-ketliklar va ularning yaqinlashuvchanligi
|
bet | 4/10 | Sana | 15.06.2024 | Hajmi | 2,81 Mb. | | #263944 |
Bog'liq TAYYOR1.2. Funksional qator
Biror X to`plamda (XcR) f1(x), f2(x),…,fn(x),… (1) funksional ketma-ketlik berilgan bo`lsin.
Ta`rif. (1) ketma-ketlik hadlarida tashkil topgan
(2) ifoda funksional qator deyiladi. Bunda, f1(x), f2(x),… funksiyalar (2) qatorning hadlari fn(x) esa uning umumiy hadi deyiladi.
(2) funksional qator hadlari yordamida tuzulgan ushbu:
S1(x)=f1(x)
S2(x)=f1(x)+f2(x)
………………..
Sn(x)=f1(x)+f2(x)+…+fn(x)
Yig`indilar ketma-ketligi funksional qatorning qismiy yig`indilar ketma-ketligi deyiladi.
Shuni takidlash lozimki, funksional qatorlarni o`rganish, funksional ketma-ketliklarni o`rganishga ekvivalent.
Ta`rif. Agar da {Sn(x)} funksional ketma-ketlik x0 nuqtada (x0єX) yaqinlashuvchi (uzoqlashuvchi) bo`lsa, (2) funksional qator x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi..
Misol. qatorning yaqinlashishini tekshiring va uning yig`indisini toping.
Yechish. Bu qator x ning hamma qiymatlarida yaqinlashuvchi. Haqiqatdan ham, x≠0 bo`lganda berilgan qator maxraji , 0
Agar x=0 bo`lsa, berilgan qatorning hamma hadlari nolga teng bo`lib yaqinlashuvchi va S(0)=0/ shunday qilib,
Bu misoldan ko`rinadiki qatorning hamma hadlari Rda uzluksiz, qator esa yaqinlashuvchi, lekin qatorning yig`indisi uslishga ega.
Biz bundan keyin qanday shartlar bajarilganda hadlari uzluksiz funksiyalardan iborat yaqinlashuvchi funksional qatorning yig`indisi uzliksiz bo`ladi degan masala bilan shug`illanamiz.
(4) funksional qatorni qaraymiz. Bunda fn(n) funksiyalar X to`plamda berilgan bo`lib, x0єX bo`lsin.
Ta`rif. Agar (5) funksional qator x=x0 nuqtada yaqinlashuvchi bo`lsa, u holda (4) funksional qator absolyut yaqinlashuvchi deyiladi.
1>
|
| |